
Week 4

Grammars Pt. 2

Anakin

Outline

Context Free Grammars

Pushdown Automata

Section 1

Context Free Grammars

Quick Review

{
0n1n

∣∣∣ n ≥ 0
}

is generated by

A → 0A1
A → B

B → ε

Quick Review

{
0n1n

∣∣∣ n ≥ 0
}

is generated by

A → 0A1
A → B

B → ε

Quick Review

{
0n1n

∣∣∣ n ≥ 0
}

is generated by

A → 0A1 | ε

Determining If Strings Are In A CFL

Determining If Strings Are In A CFL

A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000B111 ⇒ 000ε111 ⇒ 000111

Comparison with Regular Languages

• CFGs define a language much like Regex/DFAs/NFAs

• Regex / DFAs / NFAs ↔ Regular Languages
• Context Free Grammars ↔ Context Free Languages

Comparison with Regular Languages

• CFGs define a language much like Regex/DFAs/NFAs
• Regex / DFAs / NFAs ↔ Regular Languages
• Context Free Grammars ↔ Context Free Languages

Questions!

This is going to be a review of a ton of things we’ve talked about since
automata are coming back

• Create a CFG and NFA / DFA to recognize
{w | the length of w is odd }

• Create a CFG to recognize
{w | the length of w is odd and the middle character is 0 }

Questions!

This is going to be a review of a ton of things we’ve talked about since
automata are coming back

• Create a CFG and NFA / DFA to recognize
{w | the length of w is odd }

• Create a CFG to recognize
{w | the length of w is odd and the middle character is 0 }

Answers
Create a CFG and NFA / DFA to recognize
{w | the length of w is odd }

S → 1E | 0E
E → ε | 0S | 1S

Answers

Create a CFG to recognize

{w | the length of w is odd and the middle character is 0 }

S → 0 | TST
T → 0 | 1

Section 2

Pushdown Automata

Automata for CFLs

• Regex ↔ DFAs / NFAs

• Context Free Grammars ↔ ???

Automata for CFLs

• Regex ↔ DFAs / NFAs
• Context Free Grammars ↔ ???

Automata for CFLs

• Regex ↔ DFAs / NFAs
• Context Free Grammars ↔ Pushdown Automata

State Machines With an Upgrade

State Machines With an Upgrade

What is a Stack??

• Think about stacking objects (books, plates, whatever)

• You can add items to the top only and lose immediate access to
anything below it

• If you want to get an item from your stack, you have to pick up the
top item first and then discard it

What is a Stack??

• Think about stacking objects (books, plates, whatever)
• You can add items to the top only and lose immediate access to

anything below it

• If you want to get an item from your stack, you have to pick up the
top item first and then discard it

What is a Stack??

• Think about stacking objects (books, plates, whatever)
• You can add items to the top only and lose immediate access to

anything below it
• If you want to get an item from your stack, you have to pick up the

top item first and then discard it

Stack

Stack

Stack

Stack

Stack

Stack

Stack

Stack

What does this get you?

• You remember DFAs and NFAs???

• We could remember only the current state
• The stack gives us a sort of memory
• NFA + Stack ↔ Context Free Grammar

What does this get you?

• You remember DFAs and NFAs???
• We could remember only the current state

• The stack gives us a sort of memory
• NFA + Stack ↔ Context Free Grammar

What does this get you?

• You remember DFAs and NFAs???
• We could remember only the current state
• The stack gives us a sort of memory

• NFA + Stack ↔ Context Free Grammar

What does this get you?

• You remember DFAs and NFAs???
• We could remember only the current state
• The stack gives us a sort of memory
• NFA + Stack ↔ Context Free Grammar

DFA

PDA for { 0n1n, n ≥ 0 }

PDA for { 0n1n, n ≥ 0 }

0011
?
∈ { 0n1n, n ≥ 0 }

0011
?
∈ { 0n1n, n ≥ 0 }

0011
?
∈ { 0n1n, n ≥ 0 }

0011
?
∈ { 0n1n, n ≥ 0 }

0011
?
∈ { 0n1n, n ≥ 0 }

0011
?
∈ { 0n1n, n ≥ 0 }

0011
?
∈ { 0n1n, n ≥ 0 }

0011
?
∈ { 0n1n, n ≥ 0 }

0011
?
∈ { 0n1n, n ≥ 0 }

0011
?
∈ { 0n1n, n ≥ 0 }

0011
?
∈ { 0n1n, n ≥ 0 }

0011
?
∈ { 0n1n, n ≥ 0 }

0011
?
∈ { 0n1n, n ≥ 0 }

0011
?
∈ { 0n1n, n ≥ 0 }

0011
?
∈ { 0n1n, n ≥ 0 }

Questions?

Questions!

• Come up with a CFG and a PDA to match the following language

{ w | w has as many a’s as b’s }

Answers

Come up with a CFG and a PDA to match the following language

{ w | w has as many a’s as b’s }

S → ε | Sab | aSb | aSbS

Answers
Come up with a CFG and a PDA to match the following language

{ w | w has as many a’s as b’s }

	Context Free Grammars
	Pushdown Automata

