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Section 1

Context Free Grammars



Quick Review

{
0n1n

∣∣∣ n ≥ 0
}

is generated by

A → 0A1
A → B

B → ε



Quick Review

{
0n1n

∣∣∣ n ≥ 0
}

is generated by

A → 0A1
A → B

B → ε



Quick Review

{
0n1n

∣∣∣ n ≥ 0
}

is generated by

A → 0A1 | ε



Determining If Strings Are In A CFL



Determining If Strings Are In A CFL

A ⇒ 0A1 ⇒ 00A11 ⇒ 000A111 ⇒ 000B111 ⇒ 000ε111 ⇒ 000111



Comparison with Regular Languages

• CFGs define a language much like Regex/DFAs/NFAs

• Regex / DFAs / NFAs ↔ Regular Languages
• Context Free Grammars ↔ Context Free Languages
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Questions!

This is going to be a review of a ton of things we’ve talked about since
automata are coming back

• Create a CFG and NFA / DFA to recognize
{w | the length of w is odd }

• Create a CFG to recognize
{w | the length of w is odd and the middle character is 0 }



Questions!

This is going to be a review of a ton of things we’ve talked about since
automata are coming back

• Create a CFG and NFA / DFA to recognize
{w | the length of w is odd }

• Create a CFG to recognize
{w | the length of w is odd and the middle character is 0 }



Answers
Create a CFG and NFA / DFA to recognize
{w | the length of w is odd }

S → 1E | 0E
E → ε | 0S | 1S



Answers

Create a CFG to recognize

{w | the length of w is odd and the middle character is 0 }

S → 0 | TST
T → 0 | 1



Section 2

Pushdown Automata



Automata for CFLs

• Regex ↔ DFAs / NFAs

• Context Free Grammars ↔ ???
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Automata for CFLs

• Regex ↔ DFAs / NFAs
• Context Free Grammars ↔ Pushdown Automata



State Machines With an Upgrade



State Machines With an Upgrade



What is a Stack??

• Think about stacking objects (books, plates, whatever)

• You can add items to the top only and lose immediate access to
anything below it

• If you want to get an item from your stack, you have to pick up the
top item first and then discard it
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What does this get you?

• You remember DFAs and NFAs???

• We could remember only the current state
• The stack gives us a sort of memory
• NFA + Stack ↔ Context Free Grammar
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• You remember DFAs and NFAs???
• We could remember only the current state
• The stack gives us a sort of memory
• NFA + Stack ↔ Context Free Grammar



DFA



PDA for { 0n1n, n ≥ 0 }
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Questions!

• Come up with a CFG and a PDA to match the following language

{ w | w has as many a’s as b’s }



Answers

Come up with a CFG and a PDA to match the following language

{ w | w has as many a’s as b’s }

S → ε | Sab | aSb | aSbS



Answers
Come up with a CFG and a PDA to match the following language

{ w | w has as many a’s as b’s }
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