
Week 4
Let’s Build a Computer!

Aditya (@nebu)



Outline

Combinational Logic

Feedback and FSMs

Building a Computer



Why Are We Doing This?

• Understanding automata theory means understanding, in part,
what the things in this figure mean:



Why Are We Doing This?

• Understanding automata theory means understanding, in part,
what the things in the figure on the previous slide mean.

• Teaches an application of what we’re learning.
• Shows how general and useful the ideas we’re covering are.

(@Hassam compilers soon? )
• Is very rewarding since computers are everywhere.



Section 1

Combinational Logic



NOT Gate

A Q = A

0 1
1 0



AND Gate

A B Q = AB

0 0 0
0 1 0
1 0 0
1 1 1



OR Gate

A B Q = A + B

0 0 0
0 1 1
1 0 1
1 1 1



That’s It!*

• AND, OR, and NOT are functionally complete.
• This means we can turn any “Boolean” function into one that’s

made up of only ANDs, ORs, and NOTs.



Constructive Proof

A B C Q

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1



Constructive Proof

A B C Q

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Q = ABC + ABC + ABC + ABC

This works because we “look for”
all combinations of A, B, and C
that’ll make Q high. If any of those
combinations are high, Q is high.



Questions?



Questions!

Write F as an expression of A, B, and S.

S A B F

0 0 0 0
0 0 1 0
0 1 0 1
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1



Solution

F = SA + SB



Takeaways Before We Move On

• We can now map any input bits to output bits.
• You can build any Boolean function using only AND, OR, and

NOT.
• Using this knowledge, you can build adders, multipliers, decoders,

priority MUXes...whatever you want really.



Section 2

Feedback and FSMs



A Fly in the Soup

• When I said you could build anything you wanted, what did I miss?
• Storage.
• Any ideas?



Consider This: No Longer Combinational



That’s a Latch

It’s rarely used as a memory element — can you guess why?

Latches are level triggered.



To Explain This, Let’s Talk About Cars



Timing is Key, Or Else…



Any ideas?



Use Two Barriers!



How Does This Help?

• Timing is now easy — we just need to push one switch to swap the
states of the barriers.

• Actually making two barriers in hardware isn’t very tricky…



D Flip Flop/ D Register...Finally a Nice Storage
Element!



Who Flips the Switch?

What we really need is a low to high transition, to load data
correctly into our flip flop.

We use an alternating signal, called a clock, to give us these transitions
at regular intervals.



Synchronous Digital Logic

A synchronous digital circuit is made up of flip flops/latches and
combinational logic, all run by a single clock.



Questions?



Questions!

You’re given a D flip flop, a NOT gate, and a clock signal. Make a
circuit that, on every 0 to 1 transition of the clock, inverts the value
stored in the flip flop. You may assume the flip flop is initialized with a
valid value.

Hint: Think about when the flip flop loads data, and what data it
should load.



Solution



We Can Now Build FSMs!
Recall that a DFA is simply something like:

Let’s build something similar1 using our synchronous logic.
1Formally, a finite state transducer.



What is an FSM, Really

• An input alphabet: {0, 1}
• A bunch of states: {qeven, qodd}
• An initial state: qeven

• A state transition function:
State Input Next State

qeven 0 qeven
qeven 1 qodd
qodd 0 qodd
qodd 1 qeven



Now, Let’s Make it in Hardware

• An input alphabet: {0, 1}
• A bunch of states: {qeven, qodd}
• An initial state: qeven

• A state transition function:
State Input Next State

qeven 0 qeven
qeven 1 qodd
qodd 0 qodd
qodd 1 qeven

• An input alphabet: {0, 1}
• A bunch of states: use a flip

flop, (qeven, qodd) = (0, 1).
• An initial state: initialize the

flip flop to 0.
• A state transition function:

State Input Next State

0 0 0
0 1 1
1 0 1
1 1 0



Our Final Hardware FSM Is



Hardware FSMs Also Have Outputs

• An output alphabet
• An output function that maps states to outputs



Generalized (Moore) FSM Architecture



Questions?



Questions!

Design in hardware an FSM that detects non-overlapping sequences of
the string 101. (Your input alphabet is {0, 1}.)



Section 3

Building a Computer



What is a Computer?

According to Wikipedia…
A computer is a digital electronic machine that can be pro-
grammed to carry out sequences of arithmetic or logical opera-
tions (computation) automatically.

Surprisingly accurate description — of a CPU.



Von Neumann Architecture



A CPU Has

• Memory: We’ll assume it’s random access. The CPU can
read/write values from here at will.

• Registers: a bunch of flip flops where it stores values that it’s
currently operating on.

• Combinational logic to “compute” things: adders, logical units,
etc. whose inputs and outputs are the registers.

• Instructions: Stored in the memory, (logically) executed one after
another.

• Control Unit: Orchestrates the whole thing.



The Control Unit Is

A giant FSM that does the following things:
• Fetch: Gets an “instruction” from memory.
• Decode: Figures out what to do according to the instruction.
• Execute: Actually do the instruction. Once it’s done, go decode

the next instruction in memory — increment the program counter.



Instructions

What can the CPU do?
• ADD: Takes two registers, adds them, puts the sum in a register. Set

condition codes.
• AND: Takes two registers, ANDs them, puts the result in a register.

Set condition codes.
• NOT: Takes a register, NOTs it, puts the result in a register. Set

condition codes.
• BR: Depending on “condition codes”, move the program counter to

the location specified.
• JMP: Move the program counter to the address specified.
• LDR: Load the contents of a memory address into a register.
• STR: Store the contents of a register into a memory address.







Questions?



42

The computer looked normal size for a black space-borne computer satellite —

about a thousand miles across.

— DOUGLAS ADAMS (1979)


	Combinational Logic
	Feedback and FSMs
	Building a Computer

