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Section 1

Introduction



Idea

• How many roots does a degree d polynomial have?

▶ Fundamental Theorem of Algebra say ≤ d roots

• Idea: Encode messages as evaluations of polynomials

• Few roots =⇒ good distance



Notation:

• Fq = “Integers mod q” where q is a prime power (Finite Field)

• Fq[x] = Polynomials with coefficients in Fq

Definition (Reed-Solomon Codes [RS60])
Let q ≥ n ≥ k. Let α1, . . . , αn ∈ Fq be distinct evaluation points. The
Reed-Solomon Code of dimension k with alphabet Fq and evaluation
points α⃗ = [α1, . . . , αn] is

RSq(α⃗, n, k) = { [f(α1), . . . , f(αn)] | f ∈ Fq[x], deg(f) ≤ k − 1 }



Encoding

Definition (Reed-Solomon Codes [RS60])
Let q ≥ n ≥ k. Let α1, . . . , αn ∈ Fq be distinct evaluation points. The
Reed-Solomon Code of dimension k with alphabet Fq and evaluation
points α⃗ = [α1, . . . , αn] is

RSq(α⃗, n, k) = { [f(α1), . . . , f(αn)] | f ∈ Fq[x], deg(f) ≤ k − 1 }

Say we want to encode a message m⃗ = [m0,m1, . . . ,mk−1], mi ∈ Fq

Let fm⃗(x) :=
k−1∑
i=0

mix
i

ENC(m0, . . . ,mk−1) = [fm⃗(α1), . . . , fm⃗(αn)]



Linearity

Definition (Reed-Solomon Codes [RS60])
RSq(α⃗, n, k) = { [f(α1), . . . , f(αn)] | f ∈ Fq[x], deg(f) ≤ k − 1 }

• RSq(α⃗, n, k) is a linear code

▶ Polynomials of degree ≤ k − 1 in Fq[x] are a k-dimensional vector
space

• If you recall from Hassam’s meeting on linear codes, linear codes
have generator matrices

G =


1 α1 α2

1 · · · αk−1
1

1 α2 α2
2 · · · αk−1

2
...

... α2
2 · · ·

...
1 αn α2

n · · · αk−1
n





Example

Let q ≥ n ≥ k be 7 ≥ 4 ≥ 3 respectively. Let
α⃗ = [α1, . . . , αn] = [1, 2, 4, 6].

ENC(m0, . . . ,mk−1) = [fm⃗(α1), . . . , fm⃗(αn)]

Lets encode [m0,m1,m2] = [1, 3, 5].

fm⃗(x) :=

k−1∑
i=0

mix
i = ???

[fm⃗(α1), fm⃗(α2), fm⃗(α3), fm⃗(α4)] = [2, 6, 2, 3]

How do we decode?



Example

Let q ≥ n ≥ k be 7 ≥ 4 ≥ 3 respectively. Let
α⃗ = [α1, . . . , αn] = [1, 2, 4, 6].

ENC(m0, . . . ,mk−1) = [fm⃗(α1), . . . , fm⃗(αn)]

Lets encode [m0,m1,m2] = [1, 3, 5].

fm⃗(x) :=

k−1∑
i=0

mix
i = 1 + 3x+ 5x2 ∈ F7[x]

[fm⃗(α1), fm⃗(α2), fm⃗(α3), fm⃗(α4)] = [2, 6, 2, 3]

How do we decode?



The Original Decoding Algorithm

Say we want to recover m⃗ from [f(α1), . . . , f(αn)]. Here is the original
algorithm from Reed and Solomon’s paper:

1. deg(f) = k − 1 so choose any k of the evaluations f(αi)

2. Interpolate these points and find the polynomial f
m⃗′(x) =

k−1∑
i=0

m′
ix

i

defined by these points

3. Do this for all
(
n
k

)
choices of evaluations, do majority voting to pick

out the right coefficients mi



Lagrange Interpolation

• Note: If two polynomials of degree ≤ k − 1 agree on k points, they
must be the same polynomial

• Let f(x) be some polynomial of degree ≤ k − 1, α1, . . . , αk distinct
points in Fq

L(x) :=

k∑
i=1

f(αi)

 k∏
j=1
i ̸=j

x− αj

αi − αj

 = the Lagrange Interpolating polynomial

Claim: L(x) = f(x) for all x.



Lagrange Interpolation

Let f(x) be some polynomial of degree ≤ k− 1, α1, . . . , αk distinct points
in Fq

L(x) :=

k∑
i=1

f(αi)

 k∏
j=1
i ̸=j

x− αj

αi − αj

 = the Lagrange Interpolating polynomial

k∏
j=1
i ̸=j

x− αj

αi − αj
=

{
1 if x = αi

0 if x ̸= αi (so x = αj for some i ̸= j)

=⇒ L(x) = f(x) on k points =⇒ L(x) = f(x) on all points



Lagrange Interpolation

Let f(x) be some polynomial of degree ≤ k− 1, α1, . . . , αk distinct points
in Fq

L(x) :=

k∑
i=1

f(αi)

 k∏
j=1
i ̸=j

x− αj

αi − αj

 = the Lagrange Interpolating polynomial

f(αi) ·
k∏

j=1
i ̸=j

x− αj

αi − αj
=

{
f(αi) if x = αi

0 if x ̸= αi (so x = αj for some i ̸= j)

=⇒ L(x) = f(x) on k points =⇒ L(x) = f(x) on all points



Lagrange Interpolation

Let f(x) be some polynomial of degree ≤ k− 1, α1, . . . , αk distinct points
in Fq

L(x) :=

k∑
i=1

f(αi)

 k∏
j=1
i ̸=j

x− αj

αi − αj

 = the Lagrange Interpolating polynomial

k∑
i=1

f(αi)

 k∏
j=1
i ̸=j

x− αj

αi − αj

 = f(αi) if x = αi for some i

=⇒ L(x) = f(x) on k points =⇒ L(x) = f(x) on all points



History

• 1960: Reed and Solomon publish their original paper [RS60]

• 1968/1969: Berlekamp and Massey improve on the decoding
algorithm [Ber68,Mas69]

• 1986: Berlekamp and Welch design an even faster decoding
algorithm [WB86]

• 1996 and beyond: List Decoding methods become more prevalent



Applications

QR Codes

CDs were the first mass produced item to use Reed-Solomon Codes
(combined with techniques for burst errors from last meeting!)





Questions?



Section 2

The Singleton Bound



Theorem (Singleton Bound [Sin64])
If C is is code over an alphabet Σ of size q encoding messages of length k
into codes of length n with distance d, then k ≤ n− d+ 1

Recall R = k
n is the rate of C



Proof of the Singleton Bound
Theorem (Singleton Bound [Sin64])
If C is is code over an alphabet Σ of size q encoding messages of length k
into codes of length n with distance d, then k ≤ n− d+ 1

• Let c = (

ϕ(c)︷ ︸︸ ︷
c1, . . . , cn−d+1,

discard︷ ︸︸ ︷
cn−d+2, . . . , cn) ∈ C

• Let C̃ = { ϕ(c) | c ∈ C } ⊆ Σn−d+1

• Claim: |C| = |C̃|
▶ If not, then ϕ(c) = ϕ(c′) for some c ̸= c′ ∈ C. Thus ∆(c, c′) ≤ d− 1.

Contradicts fact that C has distance d!

• Thus |C| = |C̃| ≤ qn−d+1

• =⇒ k := logq |C| ≤ n− d+ 1



Theorem
Reed-Solomon codes meet the Singleton Bound! The distance of
RSq(α⃗, k, n) is d = n− k + 1.

• The intuition for this is that the polynomials can have at most k − 1
zeroes so at most k − 1 of the f(αi)’s are 0.

• Distance n− k − 1 means we can correct ≤
⌊
n−k
2

⌋
errors

• We call Linear (n, k, d)q codes with distance d = n− k + 1 Maximum
Distance Seperable codes.

Conjecture (The MDS Conjecture [Seg55])
If k ≤ q then a linear MDS code has n ≤ q + 1 unless q = 2h and k = 3 or
k = q − 1 in which case n ≤ q + 2.



Questions?



Section 3

Berlekamp-Welch



A Faster Decoding Algorithm

Given (c1, . . . , cn ∈ RSq(α⃗, n, k) with e ≤
⌊
n−k
2

⌋
errors, we want to find

f ∈ Fq[x] such that deg(f) ≤ k and f(αi) ̸= ci at most e times.

Here is the idea behind the faster Berlekamp-Welch algorithm for
decoding Reed-Solomon codes:

• Let E(x) :=
∏

i : ci ̸=f(αi)

(x− αi) be the Error Locator Polynomial

• For all 1 ≤ i ≤ n, we have that ci · E(αi) = f(αi) · E(αi)

▶ If ci = f(αi) then this is obvious

▶ If ci ̸= f(αi) then this is true because E(αi) = 0

• The algorithm will find E(x) and Q(x) := f(x) · E(x)



These Polynomials Exist

Lemma
Suppose there was some degree ≤ k − 1 polynomial fm⃗(x) =

k−1∑
i=0

mix
i

such that ∆(m, c) ≤ e. Then there exist polynomials E(x) monic of
degree ≤ e and Q(x) of degree ≤ e+ k − 1 such that

for all 1 ≤ i ≤ n, ci · E(αi) = Q(αi)

• E(x) =

( ∏
i : ci ̸=f(αi)

(x− αi)

)
∗ xe−∆(m,c)

• Q(x) = E(x) · f(x)



System of Equations

Ok but how do we find E(x) and Q(x)?

E(x) :=

e∑
j=0

ejx
j Q(x) :=

e+k−1∑
j=0

qjx
j

Since ci · E(αi) = Q(αi), we have ci · E(αi)−Q(αi) = 0 for all i. This
gives n linear equations, one for each αi:

ci

e∑
j=0

ejα
j
i −

e+k−1∑
j=0

qjα
j
i = 0

We have n linear equations, and 2e+ k variables. The Lemma tells us
that if there are not too many errors, some solution exists!



Berlekamp-Welch(c = [c1, . . . , cn]):
Find polynomials E(x), Q(x) ∈ Fq[x] such that
E(x) is monic of degree e
Q(x) is of degree ≤ e+ k − 1
For all 1 ≤ i ≤ n:

ci · E(αi) = Q(αi)
If no solution: return none
f̃m⃗ ← Q(x)/E(x)
c̃← ENC(m0, . . . ,mk−1)
If ∆(c̃, c) > e, return none
Return f̃m⃗

1. Gaussian Elimination takes O(n3) time

2. Polynomial division will take O(n3) time

3. Computing c̃ will take O(nk2) ≤ O(n3) time

4. Computing ∆(c̃, c) takes O(n) time



Questions?



So long and thanks for all the fish!

— DOUGLAS ADAMS (1979)
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