
Reed-Solomon Codes

The Greatest Code of Them All

Anakin

Section 1

Introduction

Idea

• How many roots does a degree d polynomial have?

▶ Fundamental Theorem of Algebra say ≤ d roots

• Idea: Encode messages as evaluations of polynomials

• Few roots =⇒ good distance

Notation:

• Fq = “Integers mod q” where q is a prime power (Finite Field)

• Fq[x] = Polynomials with coefficients in Fq

Definition (Reed-Solomon Codes [RS60])
Let q ≥ n ≥ k. Let α1, . . . , αn ∈ Fq be distinct evaluation points. The
Reed-Solomon Code of dimension k with alphabet Fq and evaluation
points α⃗ = [α1, . . . , αn] is

RSq(α⃗, n, k) = { [f(α1), . . . , f(αn)] | f ∈ Fq[x], deg(f) ≤ k − 1 }

Encoding

Definition (Reed-Solomon Codes [RS60])
Let q ≥ n ≥ k. Let α1, . . . , αn ∈ Fq be distinct evaluation points. The
Reed-Solomon Code of dimension k with alphabet Fq and evaluation
points α⃗ = [α1, . . . , αn] is

RSq(α⃗, n, k) = { [f(α1), . . . , f(αn)] | f ∈ Fq[x], deg(f) ≤ k − 1 }

Say we want to encode a message m⃗ = [m0,m1, . . . ,mk−1], mi ∈ Fq

Let fm⃗(x) :=
k−1∑
i=0

mix
i

ENC(m0, . . . ,mk−1) = [fm⃗(α1), . . . , fm⃗(αn)]

Linearity

Definition (Reed-Solomon Codes [RS60])
RSq(α⃗, n, k) = { [f(α1), . . . , f(αn)] | f ∈ Fq[x], deg(f) ≤ k − 1 }

• RSq(α⃗, n, k) is a linear code

▶ Polynomials of degree ≤ k − 1 in Fq[x] are a k-dimensional vector
space

• If you recall from Hassam’s meeting on linear codes, linear codes
have generator matrices

G =


1 α1 α2

1 · · · αk−1
1

1 α2 α2
2 · · · αk−1

2
...

... α2
2 · · ·

...
1 αn α2

n · · · αk−1
n



Example

Let q ≥ n ≥ k be 7 ≥ 4 ≥ 3 respectively. Let
α⃗ = [α1, . . . , αn] = [1, 2, 4, 6].

ENC(m0, . . . ,mk−1) = [fm⃗(α1), . . . , fm⃗(αn)]

Lets encode [m0,m1,m2] = [1, 3, 5].

fm⃗(x) :=

k−1∑
i=0

mix
i = ???

[fm⃗(α1), fm⃗(α2), fm⃗(α3), fm⃗(α4)] = [2, 6, 2, 3]

How do we decode?

Example

Let q ≥ n ≥ k be 7 ≥ 4 ≥ 3 respectively. Let
α⃗ = [α1, . . . , αn] = [1, 2, 4, 6].

ENC(m0, . . . ,mk−1) = [fm⃗(α1), . . . , fm⃗(αn)]

Lets encode [m0,m1,m2] = [1, 3, 5].

fm⃗(x) :=

k−1∑
i=0

mix
i = 1 + 3x+ 5x2 ∈ F7[x]

[fm⃗(α1), fm⃗(α2), fm⃗(α3), fm⃗(α4)] = [2, 6, 2, 3]

How do we decode?

The Original Decoding Algorithm

Say we want to recover m⃗ from [f(α1), . . . , f(αn)]. Here is the original
algorithm from Reed and Solomon’s paper:

1. deg(f) = k − 1 so choose any k of the evaluations f(αi)

2. Interpolate these points and find the polynomial f
m⃗′(x) =

k−1∑
i=0

m′
ix

i

defined by these points

3. Do this for all
(
n
k

)
choices of evaluations, do majority voting to pick

out the right coefficients mi

Lagrange Interpolation

• Note: If two polynomials of degree ≤ k − 1 agree on k points, they
must be the same polynomial

• Let f(x) be some polynomial of degree ≤ k − 1, α1, . . . , αk distinct
points in Fq

L(x) :=

k∑
i=1

f(αi)

 k∏
j=1
i ̸=j

x− αj

αi − αj

 = the Lagrange Interpolating polynomial

Claim: L(x) = f(x) for all x.

Lagrange Interpolation

Let f(x) be some polynomial of degree ≤ k− 1, α1, . . . , αk distinct points
in Fq

L(x) :=

k∑
i=1

f(αi)

 k∏
j=1
i ̸=j

x− αj

αi − αj

 = the Lagrange Interpolating polynomial

k∏
j=1
i ̸=j

x− αj

αi − αj
=

{
1 if x = αi

0 if x ̸= αi (so x = αj for some i ̸= j)

=⇒ L(x) = f(x) on k points =⇒ L(x) = f(x) on all points

Lagrange Interpolation

Let f(x) be some polynomial of degree ≤ k− 1, α1, . . . , αk distinct points
in Fq

L(x) :=

k∑
i=1

f(αi)

 k∏
j=1
i ̸=j

x− αj

αi − αj

 = the Lagrange Interpolating polynomial

f(αi) ·
k∏

j=1
i ̸=j

x− αj

αi − αj
=

{
f(αi) if x = αi

0 if x ̸= αi (so x = αj for some i ̸= j)

=⇒ L(x) = f(x) on k points =⇒ L(x) = f(x) on all points

Lagrange Interpolation

Let f(x) be some polynomial of degree ≤ k− 1, α1, . . . , αk distinct points
in Fq

L(x) :=

k∑
i=1

f(αi)

 k∏
j=1
i ̸=j

x− αj

αi − αj

 = the Lagrange Interpolating polynomial

k∑
i=1

f(αi)

 k∏
j=1
i ̸=j

x− αj

αi − αj

 = f(αi) if x = αi for some i

=⇒ L(x) = f(x) on k points =⇒ L(x) = f(x) on all points

History

• 1960: Reed and Solomon publish their original paper [RS60]

• 1968/1969: Berlekamp and Massey improve on the decoding
algorithm [Ber68,Mas69]

• 1986: Berlekamp and Welch design an even faster decoding
algorithm [WB86]

• 1996 and beyond: List Decoding methods become more prevalent

Applications

QR Codes

CDs were the first mass produced item to use Reed-Solomon Codes
(combined with techniques for burst errors from last meeting!)

Questions?

Section 2

The Singleton Bound

Theorem (Singleton Bound [Sin64])
If C is is code over an alphabet Σ of size q encoding messages of length k
into codes of length n with distance d, then k ≤ n− d+ 1

Recall R = k
n is the rate of C

Proof of the Singleton Bound
Theorem (Singleton Bound [Sin64])
If C is is code over an alphabet Σ of size q encoding messages of length k
into codes of length n with distance d, then k ≤ n− d+ 1

• Let c = (

ϕ(c)︷ ︸︸ ︷
c1, . . . , cn−d+1,

discard︷ ︸︸ ︷
cn−d+2, . . . , cn) ∈ C

• Let C̃ = { ϕ(c) | c ∈ C } ⊆ Σn−d+1

• Claim: |C| = |C̃|
▶ If not, then ϕ(c) = ϕ(c′) for some c ̸= c′ ∈ C. Thus ∆(c, c′) ≤ d− 1.

Contradicts fact that C has distance d!

• Thus |C| = |C̃| ≤ qn−d+1

• =⇒ k := logq |C| ≤ n− d+ 1

Theorem
Reed-Solomon codes meet the Singleton Bound! The distance of
RSq(α⃗, k, n) is d = n− k + 1.

• The intuition for this is that the polynomials can have at most k − 1
zeroes so at most k − 1 of the f(αi)’s are 0.

• Distance n− k − 1 means we can correct ≤
⌊
n−k
2

⌋
errors

• We call Linear (n, k, d)q codes with distance d = n− k + 1 Maximum
Distance Seperable codes.

Conjecture (The MDS Conjecture [Seg55])
If k ≤ q then a linear MDS code has n ≤ q + 1 unless q = 2h and k = 3 or
k = q − 1 in which case n ≤ q + 2.

Questions?

Section 3

Berlekamp-Welch

A Faster Decoding Algorithm

Given (c1, . . . , cn ∈ RSq(α⃗, n, k) with e ≤
⌊
n−k
2

⌋
errors, we want to find

f ∈ Fq[x] such that deg(f) ≤ k and f(αi) ̸= ci at most e times.

Here is the idea behind the faster Berlekamp-Welch algorithm for
decoding Reed-Solomon codes:

• Let E(x) :=
∏

i : ci ̸=f(αi)

(x− αi) be the Error Locator Polynomial

• For all 1 ≤ i ≤ n, we have that ci · E(αi) = f(αi) · E(αi)

▶ If ci = f(αi) then this is obvious

▶ If ci ̸= f(αi) then this is true because E(αi) = 0

• The algorithm will find E(x) and Q(x) := f(x) · E(x)

These Polynomials Exist

Lemma
Suppose there was some degree ≤ k − 1 polynomial fm⃗(x) =

k−1∑
i=0

mix
i

such that ∆(m, c) ≤ e. Then there exist polynomials E(x) monic of
degree ≤ e and Q(x) of degree ≤ e+ k − 1 such that

for all 1 ≤ i ≤ n, ci · E(αi) = Q(αi)

• E(x) =

(∏
i : ci ̸=f(αi)

(x− αi)

)
∗ xe−∆(m,c)

• Q(x) = E(x) · f(x)

System of Equations

Ok but how do we find E(x) and Q(x)?

E(x) :=

e∑
j=0

ejx
j Q(x) :=

e+k−1∑
j=0

qjx
j

Since ci · E(αi) = Q(αi), we have ci · E(αi)−Q(αi) = 0 for all i. This
gives n linear equations, one for each αi:

ci

e∑
j=0

ejα
j
i −

e+k−1∑
j=0

qjα
j
i = 0

We have n linear equations, and 2e+ k variables. The Lemma tells us
that if there are not too many errors, some solution exists!

Berlekamp-Welch(c = [c1, . . . , cn]):
Find polynomials E(x), Q(x) ∈ Fq[x] such that
E(x) is monic of degree e
Q(x) is of degree ≤ e+ k − 1
For all 1 ≤ i ≤ n:

ci · E(αi) = Q(αi)
If no solution: return none
f̃m⃗ ← Q(x)/E(x)
c̃← ENC(m0, . . . ,mk−1)
If ∆(c̃, c) > e, return none
Return f̃m⃗

1. Gaussian Elimination takes O(n3) time

2. Polynomial division will take O(n3) time

3. Computing c̃ will take O(nk2) ≤ O(n3) time

4. Computing ∆(c̃, c) takes O(n) time

Questions?

So long and thanks for all the fish!

— DOUGLAS ADAMS (1979)

Bibliography I
E. Berlekamp.

Nonbinary bch decoding (abstr.).

IEEE Transactions on Information Theory, 14(2):242–242, 1968.

J. Massey.

Shift-register synthesis and bch decoding.

IEEE Transactions on Information Theory, 15(1):122–127, 1969.

I. S. Reed and G. Solomon.

Polynomial codes over certain finite fields.

Journal of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960.

Beniamino Segre.

Curve razionali normali ek-archi negli spazi finiti.

Annali di Matematica Pura ed Applicata, 39(1):357–379, December 1955.

Bibliography II

R. Singleton.

Maximum distanceq-nary codes.

IEEE Transactions on Information Theory, 10(2):116–118, 1964.

Lloyd R. Welch and Elwyn R. Berlekamp.

Error correction for algebraic block codes, 12 1986.

US Patent 4633470.

Mary Wootters.

Algebraic coding theory, 2021.

Neal Zierler.

An introduction to algebraic and combinatorial coding theory (ian f. blake and ronald c. mullin).

SIAM Review, 20(3):607–608, 1978.

	Introduction
	The Singleton Bound
	Berlekamp-Welch

