
[Knu22, Chapter 7.2.2.1]

Algorithm X

Lou & Anakin

February 20, 2023



Outline

Review of Exact Cover

Data Structure

Algorithm X



Section 1

Review of Exact Cover



Exact Cover Problems

• The goal of Exact Cover is to select subsets of some list of items
according to certain criterion:
▶ Cover: Select subsets such that their union is all items
▶ Exact: Each item is in exactly one subset

• In 1972, Richard Karp proved that Exact Cover, among 20 other
problems, is NP-Complete
▶ Easy to verify solutions in polynomial time
▶ Hard to solve, best known solutions run in exponential time
▶ Can simulate (or reduce) other problems in NP using Exact Cover



An Example of Exact Cover

Goal: Select rows such that each column in the selection has one 1
1 0 1 0 0
0 0 0 0 1
0 1 0 1 0
0 0 1 0 1
1 0 1 1 0


We can abstract this to options containing items

1: [a, c] 2 : [e] 3 : [b, d]
4 : [c, e] 5 : [a, c, d]

Answer: Select options 1, 2, and 3



Recursively Solving Exact Cover Problems
In trying to solve the previous problem, you may have naturally found a
recursive algorithm to find a solution

FindCover(Options, Items, Cover, i):
1: if Cover is a cover:
2: terminate successfully
3: if no option in Options contains i:
4: terminate unsuccessfully
5:
6: I ← options in Options that contain i
7: Options ← Options \I
8: for each O in I:
9: j ← an item still not covered
10: FindCover(Options, Cover ∪{O }, j)



Section 2

Data Structure



• We create a linked list of our items, where each item will connect to
a linked list representing its options









Section 3

Algorithm X



Hide(p)

• Removes the option a node p is from (so that option can no longer
be chosen)





Cover(i)

• Hides all options that could cover item i
▶ Once we choose an option for i, we cannot choose any other options

including i





Algorithm X

Algorithm X(Options, Items):
1: Set up the dancing links, ℓ← 0 ⟨⟨ℓ is our level⟩⟩
2: if all items have been covered:
3: Report success, visit answer, and goto Line 13
4: i← item not yet covered
5: cover(i) then xℓ ← i.down
6: if xℓ = i:
7: goto Line 12 ⟨⟨no options left to try⟩⟩
8: else:
9: O ← option corresponding to xℓ
10: cover every item in O, then goto Line 2
11: uncover items ̸= i in option corresponding to xℓ, goto Line 6
12: uncover(i)
13: if ℓ = 0, terminate, else ℓ = ℓ− 1, goto Line 11



Initialize Data Structure



Initialize ℓ and xℓ’s



Select i = a, cover(a)



hide(7)



hide(7)



hide(7)



hide(18)



hide(18)



hide(18)



hide(18)



hide(18)



hide(18)



hide(18)



remove a



remove a



ℓ = 0, x0 = 7



cover(c)



hide(15)



hide(15)



hide(15)



remove c



9 is a spacer, go back to 7



9 is a spacer, go back to 7



ℓ = 1, attempt to cover b



ℓ = 1, attempt to cover b



This option covers d as well



Only remaining item is e



cover(e)



cover(e)



No options left to cover



Recovering The Answer

• Now our list contains links 7, 12, and 10.
• How do we recover what options we selected?
• Each node contains a field pointing to the corresponding option

▶ Data structure design is half the battle



Questions?



Questions!

• Try to implement the Dancing Links and Algorithm X
[Knu22, Chapter 7.2.2.1]
▶ If anyone does this, I’ll put the code on cstheory.org

• Walk through your own instance of an exact cover problem like we
did by following Knuth’s algorithm and go further by also walking
through the uncover / unhide routines
▶ Yes, we’re serious. It is the best way to intuit this algorithm

https://www.cstheory.org/


Bibliography

Donald E. Knuth.
The Art of Computer Programming, Volume 4B: Combinatorial Algorithms, Part 2.
Addison-Wesley Professional, 1st edition, 2022.


	Review of Exact Cover
	Data Structure
	Algorithm X

