
[Knu11, Chapter 7.2.1.1]

Binary

Anakin

Outline

Generating Tuples

The Gray Code

Towers of Hanoi and A Chinese Ring Puzzle

What Are We Doing?

What is Combinatorics?

• Existence
• Construction
• Enumeration
• Generation
• Optimization

What Are We Doing?

What is Combinatorics?
• Existence
• Construction
• Enumeration
• Generation
• Optimization

What Are We Doing?

What is Combinatorics?
• Existence
• Construction
• Enumeration
• Generation (Our focus for today!)
• Optimization

Section 1

Generating Tuples

A Classic Problem

• Suppose we wanted to generate through all binary numbers from
00000000 = 0 through to 11111111︸ ︷︷ ︸

8 1s

= 28 − 1

▶ Or more generally, 0 through 2n - 1

• Equivalent to generate tuples (an, . . . , a1) with ai ∈ { 0, 1 }
▶ We write the tuple in this direction since we write numbers with

bigger “places” to the left of smaller places
• We could even talk about other bases, like wanted to visit all base

10 numbers from 0 through 10n − 1

A Classic Problem

• Suppose we wanted to generate through all binary numbers from
00000000 = 0 through to 11111111︸ ︷︷ ︸

8 1s

= 28 − 1

▶ Or more generally, 0 through 2n - 1
• Equivalent to generate tuples (an, . . . , a1) with ai ∈ { 0, 1 }

▶ We write the tuple in this direction since we write numbers with
bigger “places” to the left of smaller places

• We could even talk about other bases, like wanted to visit all base
10 numbers from 0 through 10n − 1

A Classic Problem

• Suppose we wanted to generate through all binary numbers from
00000000 = 0 through to 11111111︸ ︷︷ ︸

8 1s

= 28 − 1

▶ Or more generally, 0 through 2n - 1
• Equivalent to generate tuples (an, . . . , a1) with ai ∈ { 0, 1 }

▶ We write the tuple in this direction since we write numbers with
bigger “places” to the left of smaller places

• We could even talk about other bases, like wanted to visit all base
10 numbers from 0 through 10n − 1

The Obvious Algorithm (for n = 8)

GenBinary():
For a1 ∈ { 0, 1 } :

For a2 ∈ { 0, 1 } :
For a3 ∈ { 0, 1 } :

For a4 ∈ { 0, 1 } :
For a5 ∈ { 0, 1 } :

For a6 ∈ { 0, 1 } :
For a7 ∈ { 0, 1 } :

For a8 ∈ { 0, 1 } :
print(a1a2a3a4a5a6a7a8)

The Obvious Algorithm (for n = 8)

GenBinary():
For a1 ∈ { 0, 1 } :

For a2 ∈ { 0, 1 } :
For a3 ∈ { 0, 1 } :

For a4 ∈ { 0, 1 } :
For a5 ∈ { 0, 1 } :

For a6 ∈ { 0, 1 } :
For a7 ∈ { 0, 1 } :

For a8 ∈ { 0, 1 } :
print(a1a2a3a4a5a6a7a8)

We Can Do Better

• What if we wanted to change our base from binary to base 10, or
arbitrary base?
▶ Mixed base, also known as mixed radix [Knu97], numbers:[

an, an−1, . . . , a1
mn, mn−1, . . . , m1

]

▶ Examples for base 2 and time (0 index your days and months):

1010012 =

[
1, 0, 1, 0, 0, 1
2, 2, 2, 2, 2, 2

]
,

2002-06-29 03:25:789 =

[
2002, 06, 29, 03, 25, 789
∞, 12, 30, 24, 60, 1000

]

We Can Do Better

• What if we wanted to change our base from binary to base 10, or
arbitrary base?
▶ Mixed base, also known as mixed radix [Knu97], numbers:[

an, an−1, . . . , a1
mn, mn−1, . . . , m1

]
▶ Examples for base 2 and time (0 index your days and months):

1010012 =

[
1, 0, 1, 0, 0, 1
2, 2, 2, 2, 2, 2

]
,

2002-06-29 03:25:789 =

[
2002, 06, 29, 03, 25, 789
∞, 12, 30, 24, 60, 1000

]

We Can Do Better

• What if we wanted to change our base from binary to base 10, or
arbitrary base?
▶ Mixed base, also known as mixed radix [Knu97], numbers:[

an, an−1, . . . , a1
mn, mn−1, . . . , m1

]
▶ Examples for base 2 and time (0 index your days and months):

1010012 =

[
1, 0, 1, 0, 0, 1
2, 2, 2, 2, 2, 2

]
,

2002-06-29 03:25:789 =

[
2002, 06, 29, 03, 25, 789
∞, 12, 30, 24, 60, 1000

]

Mixed-Radix Generation

Algorithm-M(m[1..n]):
1: a[i]← 0 for 1 ≤ i ≤ n
2: a[n+ 1]← 0, m[n+ 1]← 2 ⟨⟨Exercise: why do we need this? ⟩⟩
3: while True:
4: print(a[n] · · · a[1])
5: j ← 1
6: while a[j] = m[j]− 1
7: a[j]← 0
8: j ← j + 1
9: if j = n+ 1:
10: return
11: a[j]← a[j] + 1

By setting m[i] = 2 for all i, we can print every binary number from 0 to
2n − 1

Questions?

Section 2

The Gray Code

Becoming Lazier

• Consider the fact that I am extremely lazy

• If we are counting in binary and we count 01111→ 10000
▶ We have to change a whole 5 digits The horror! The horror!
▶ The inner while loop (Line 6) of Algorithm-M runs 5 times

• n digits means 2n numbers are generated, so O (2n) is our limit
• For each digit, this inner while loop runs O(n) times, resulting in

total runtime O (n2n)

• Is there a way to avoid this and shave off a factor of O(n)?

Becoming Lazier

• Consider the fact that I am extremely lazy
• If we are counting in binary and we count 01111→ 10000

▶ We have to change a whole 5 digits The horror! The horror!
▶ The inner while loop (Line 6) of Algorithm-M runs 5 times

• n digits means 2n numbers are generated, so O (2n) is our limit
• For each digit, this inner while loop runs O(n) times, resulting in

total runtime O (n2n)

• Is there a way to avoid this and shave off a factor of O(n)?

Becoming Lazier

• Consider the fact that I am extremely lazy
• If we are counting in binary and we count 01111→ 10000

▶ We have to change a whole 5 digits The horror! The horror!
▶ The inner while loop (Line 6) of Algorithm-M runs 5 times

• n digits means 2n numbers are generated, so O (2n) is our limit

• For each digit, this inner while loop runs O(n) times, resulting in
total runtime O (n2n)

• Is there a way to avoid this and shave off a factor of O(n)?

Becoming Lazier

• Consider the fact that I am extremely lazy
• If we are counting in binary and we count 01111→ 10000

▶ We have to change a whole 5 digits The horror! The horror!
▶ The inner while loop (Line 6) of Algorithm-M runs 5 times

• n digits means 2n numbers are generated, so O (2n) is our limit
• For each digit, this inner while loop runs O(n) times, resulting in

total runtime O (n2n)

• Is there a way to avoid this and shave off a factor of O(n)?

Becoming Lazier

• Consider the fact that I am extremely lazy
• If we are counting in binary and we count 01111→ 10000

▶ We have to change a whole 5 digits The horror! The horror!
▶ The inner while loop (Line 6) of Algorithm-M runs 5 times

• n digits means 2n numbers are generated, so O (2n) is our limit
• For each digit, this inner while loop runs O(n) times, resulting in

total runtime O (n2n)

• Is there a way to avoid this and shave off a factor of O(n)?

Gray Binary Code

• First appeared in a 1941 patent #2307868 by George R. Stibitz
• Frank Gray mentioned the code in a 1947 patent #2632058

▶ As tradition, he gets the credit rather than the people before him

• He described a systematic way to generate binary where each
successive number changes by exactly 1 digit for each step
• Louis Gros published an anonymous note “Théorie du Baguenodier”

in Lyonnais, 1872, describing the Gray binary code in relation to
solving an ancient Chinese puzzle [Gro72].
▶ So in reality, he is the inventor

Gray Binary Code

• First appeared in a 1941 patent #2307868 by George R. Stibitz
• Frank Gray mentioned the code in a 1947 patent #2632058

▶ As tradition, he gets the credit rather than the people before him
• He described a systematic way to generate binary where each

successive number changes by exactly 1 digit for each step

• Louis Gros published an anonymous note “Théorie du Baguenodier”
in Lyonnais, 1872, describing the Gray binary code in relation to
solving an ancient Chinese puzzle [Gro72].
▶ So in reality, he is the inventor

Gray Binary Code

• First appeared in a 1941 patent #2307868 by George R. Stibitz
• Frank Gray mentioned the code in a 1947 patent #2632058

▶ As tradition, he gets the credit rather than the people before him
• He described a systematic way to generate binary where each

successive number changes by exactly 1 digit for each step
• Louis Gros published an anonymous note “Théorie du Baguenodier”

in Lyonnais, 1872, describing the Gray binary code in relation to
solving an ancient Chinese puzzle [Gro72].
▶ So in reality, he is the inventor

Generating the Gray Code

Zero 0

One 1

Generating the Gray Code

Zero 0

One 1

1

0

Generating the Gray Code

Zero 00

One 01

11

10

Generating the Gray Code

Zero 00

One 01

Three 11

Two 10

Generating the Gray Code

Zero 00

One 01

Three 11

Two 10

10

11

01

00

Generating the Gray Code

Zero 000

One 001

Three 011

Two 010

110

111

101

100

Generating the Gray Code

Zero 000

One 001

Three 011

Two 010

Six 110

Seven 111

Five 101

Four 100

Generating the Gray Code

Zero 000

One 001

Three 011

Two 010

Six 110

Seven 111

Five 101

Four 100

Recursive Definition

We can define the Gray Code recursively as follows

Γ0 = ε

Γn+1 = 0 · Γn, 1 · ΓR
n

(1)

where ΓR
n is Γn and 0 · Γn stands for appending 0 to every element in Γn

You can use this to prove that gray(k) = k ⊕
⌊
k
2

⌋

Exercise: Prove that Γn generates all binary strings 0 to 2n − 1

Recursive Definition

We can define the Gray Code recursively as follows

Γ0 = ε

Γn+1 = 0 · Γn, 1 · ΓR
n

(1)

where ΓR
n is Γn and 0 · Γn stands for appending 0 to every element in Γn

You can use this to prove that gray(k) = k ⊕
⌊
k
2

⌋

Exercise: Prove that Γn generates all binary strings 0 to 2n − 1

Recursive Gray Code Generation

Here is some recursive code that makes use of the formula in Eq. 1

RecursiveGray(n):
1: if n = 0:
2: return [“ ”]
3: Γn ← []
4: Γn−1 ← RecursiveGray(n− 1)
5: for num ∈ Γn−1:
6: Γn.append(0 · num)
7: for num ∈ ΓR

n−1:
8: Γn.append(1 · num)
9: return Γn

Can we do this iteratively?

Recursive Gray Code Generation

Here is some recursive code that makes use of the formula in Eq. 1

RecursiveGray(n):
1: if n = 0:
2: return [“ ”]
3: Γn ← []
4: Γn−1 ← RecursiveGray(n− 1)
5: for num ∈ Γn−1:
6: Γn.append(0 · num)
7: for num ∈ ΓR

n−1:
8: Γn.append(1 · num)
9: return Γn

Can we do this iteratively?

Non-recursive Gray Code Generation

Algorithm-G(n):
1: a[i]← 0 for 1 ≤ i ≤ n
2: a[0]← 0 ⟨⟨Exercise: why do we need this? ⟩⟩
3: while True:
4: print(a[n] · · · a[1])
5: a[0]← 1− a[0]
6: j ← minimum j ≥ 1 such that a[j − 1] = 1
7: if j = n+ 1:
8: return
9: a[j]← 1− a[j]

We haven’t really gotten rid of the inner while loop (the minimum on
Line 6 is kind of a while loop). However, we only edit the array a once
per iteration of the outer loop.

Non-recursive Gray Code Generation

Algorithm-G(n):
1: a[i]← 0 for 1 ≤ i ≤ n
2: a[0]← 0 ⟨⟨Exercise: why do we need this? ⟩⟩
3: while True:
4: print(a[n] · · · a[1])
5: a[0]← 1− a[0]
6: j ← minimum j ≥ 1 such that a[j − 1] = 1
7: if j = n+ 1:
8: return
9: a[j]← 1− a[j]

We haven’t really gotten rid of the inner while loop (the minimum on
Line 6 is kind of a while loop). However, we only edit the array a once
per iteration of the outer loop.

Loopless Non-recursive Gray Code Generation

Algorithm-L(n):
1: a[i]← 0 for 1 ≤ i ≤ n
2: f [i]← i for 1 ≤ i ≤ n+ 1
3: while True:
4: print(a[n] · · · a[1])
5: j ← f [1]
6: f [1]← 1
7: if j = n+ 1:
8: return
9: a[j]← 1− a[j]
10: f [j]← f [j + 1]
11: f [j + 1]← j + 1

What About Other Bases?

• Can we do this change-one-digit-at-a-time thing with other bases?

▶ Yes! We can even do it looplessly
• There are two somewhat natural ways of doing this: reflected

000, 001, . . . , 009, 019, 018, . . . , 011, 010, 020, 021, 022, . . . , 091, 090, 190, 191, . . .

• and modular
000, 001, . . . , 009, 019, 010, . . . , 017, 018, 028, 029, 020, . . . , 099, 090, 190, 191, . . .

• The following algorithm will generate the reflected sequence.
▶ Exercise: Modify it to produce the modular sequence

What About Other Bases?

• Can we do this change-one-digit-at-a-time thing with other bases?
▶ Yes! We can even do it looplessly

• There are two somewhat natural ways of doing this: reflected
000, 001, . . . , 009, 019, 018, . . . , 011, 010, 020, 021, 022, . . . , 091, 090, 190, 191, . . .

• and modular
000, 001, . . . , 009, 019, 010, . . . , 017, 018, 028, 029, 020, . . . , 099, 090, 190, 191, . . .

• The following algorithm will generate the reflected sequence.
▶ Exercise: Modify it to produce the modular sequence

What About Other Bases?

• Can we do this change-one-digit-at-a-time thing with other bases?
▶ Yes! We can even do it looplessly

• There are two somewhat natural ways of doing this: reflected
000, 001, . . . , 009, 019, 018, . . . , 011, 010, 020, 021, 022, . . . , 091, 090, 190, 191, . . .

• and modular
000, 001, . . . , 009, 019, 010, . . . , 017, 018, 028, 029, 020, . . . , 099, 090, 190, 191, . . .

• The following algorithm will generate the reflected sequence.
▶ Exercise: Modify it to produce the modular sequence

What About Other Bases?

• Can we do this change-one-digit-at-a-time thing with other bases?
▶ Yes! We can even do it looplessly

• There are two somewhat natural ways of doing this: reflected
000, 001, . . . , 009, 019, 018, . . . , 011, 010, 020, 021, 022, . . . , 091, 090, 190, 191, . . .

• and modular
000, 001, . . . , 009, 019, 010, . . . , 017, 018, 028, 029, 020, . . . , 099, 090, 190, 191, . . .

• The following algorithm will generate the reflected sequence.
▶ Exercise: Modify it to produce the modular sequence

What About Other Bases?

• Can we do this change-one-digit-at-a-time thing with other bases?
▶ Yes! We can even do it looplessly

• There are two somewhat natural ways of doing this: reflected
000, 001, . . . , 009, 019, 018, . . . , 011, 010, 020, 021, 022, . . . , 091, 090, 190, 191, . . .

• and modular
000, 001, . . . , 009, 019, 010, . . . , 017, 018, 028, 029, 020, . . . , 099, 090, 190, 191, . . .

• The following algorithm will generate the reflected sequence.
▶ Exercise: Modify it to produce the modular sequence

Loopless Reflected Mixed-Radix Gray Generation
Algorithm-H(m[1..n]):

1: a[i]← 0 for 1 ≤ i ≤ n
2: f [i]← i for 1 ≤ i ≤ n+ 1
3: d[i]← 1 for 1 ≤ i ≤ n ⟨⟨directions⟩⟩
4: while True:
5: print(a[n] · · · a[1])
6: j ← f [1]
7: f [1]← 1
8: if j = n+ 1:
9: return
10: a[j]← a[j] + d[j]
11: if a[j] = 0 or a[j] = m[j]− 1:
12: d[j]← −d[j] ⟨⟨change directions⟩⟩
13: f [j]← f [j + 1]
14: f [j + 1]← j + 1

Questions?

Section 3

Towers of Hanoi and A Chinese Ring Puzzle

Monks Moving Disks Until the World Ends
• In 1883, French mathematician Édouard Lucas introduced his

puzzle “The Towers of Hanoi”

• Since then, this puzzle has had many mythical origin stories written
about it

Figure: From [Eri19]

Monks Moving Disks Until the World Ends
• In 1883, French mathematician Édouard Lucas introduced his

puzzle “The Towers of Hanoi”
• Since then, this puzzle has had many mythical origin stories written

about it

Figure: From [Eri19]

Recursively Solving the Puzzle

Figure: From [Eri19]

RecursiveHanoi(n):
1: Move the top n− 1 disks using RecursiveHanoi(n− 1)
2: Move the nth disk
3: Move the top n− 1 disks using RecursiveHanoi(n− 1)

Recursively Solving the Puzzle

Figure: From [Eri19]

RecursiveHanoi(n):
1: Move the top n− 1 disks using RecursiveHanoi(n− 1)
2: Move the nth disk
3: Move the top n− 1 disks using RecursiveHanoi(n− 1)

Iteratively Solving the Puzzle

• The recursive solution takes O (2n) time
• We can also solve the problem iteratively as follows

IterativeHanoi(n):
1: until solved:
2: Move the small disk to the right
3: Make the only legal move not involving the small disk

Figure: From [Sed03]

Solving the Puzzle using Binary
• The following iterative algorithm uses binary to iteratively solve the

puzzle
• Suppose the smallest disk is disk 1 and the largest disk is n

BinaryHanoi(n):
i← 0
while i < 2n − 1:

i← i+ 1
d← position of least significant 1 in binary(i)
if d = 1:

Move the small disk to the right
else:

Move disk d to the only legal position

Figure: From [3Bl16]

A Chinese Ring Puzzle
• There is a similar puzzle, whose exact origin is unknown

▶ In Chinese, it is known as “Jiu Lian Huan”
▶ In French, it is known as “Baguenaudier”

Figure: From [ZR21]

Allowed Moves
There are two legal moves we can make at each time
• We can remove and replace the rightmost ring at any time
• Any other ring can be removed or replaced as long as the following

two conditions are met:
▶ The ring to its right is on the bar
▶ Every ring to the right of that is off the bar

Figure: From [ZR21]

Solving the Puzzle

Figure: From [ZR21]

Algorithmically Solving the Puzzle

• In his “Théorie du Baguenodier” Louis Gros connected the Gray
binary code to solving this ring puzzle
• Let us abstract the puzzle into a series of binary digits

1111

• The binary digit will be 1 if the ring is on and 0 otherwise

Algorithmically Solving the Puzzle

1111

1101

1100

0100

0101

0111

0110

0010

0011

0001

0000

This is Gray binary code starting from 1111 and counting down to 0000

Algorithmically Solving the Puzzle

1111

1101

1100

0100

0101

0111

0110

0010

0011

0001

0000

This is Gray binary code starting from 1111 and counting down to 0000

Algorithmically Solving the Puzzle

1111

1101

1100

0100

0101

0111

0110

0010

0011

0001

0000

This is Gray binary code starting from 1111 and counting down to 0000

Algorithmically Solving the Puzzle

1111

1101

1100

0100

0101

0111

0110

0010

0011

0001

0000

This is Gray binary code starting from 1111 and counting down to 0000

Algorithmically Solving the Puzzle

1111

1101

1100

0100

0101

0111

0110

0010

0011

0001

0000

This is Gray binary code starting from 1111 and counting down to 0000

Algorithmically Solving the Puzzle

1111

1101

1100

0100

0101

0111

0110

0010

0011

0001

0000

This is Gray binary code starting from 1111 and counting down to 0000

Questions?

It has been said that combinatorics is both the easiest and hardest field of

mathematics. Easy since a lot of it requires no prerequisite knowledge. Hence a

High School Student can do work in it. Hard because a lot of it requires no

prerequisite knowledge. Hence you can’t easily apply continuous techniques.

— WILLIAM GASARCH (2019)

https://www.cs.umd.edu/~gasarch/open/pnpme.pdf

Bibliography

3Blue1Brown.
Binary, hanoi and sierpinski, part 1, Nov. 2016.

Jeff Erickson.
Algorithms.
1st edition, 06 2019.

Louis Gros.
Théorie du Baguenodier.
Imprimerie D’Aimé Aimé Vingtrinier, 1872.

Donald E. Knuth.
The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical Algorithms.
Addison-Wesley Longman Publishing Co., Inc., USA, 1997.

Donald E. Knuth.
The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1.
Addison-Wesley Professional, 1st edition, 2011.

R. Sedgewick.
Algorithms In Java, Parts 1-4, 3/E.
Pearson Education, 2003.

Wei Zhang and Peter Rasmussen.
Chinese nine linked rings puzzle, 2021.

	Generating Tuples
	The Gray Code
	Towers of Hanoi and A Chinese Ring Puzzle

