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What is Combinatorics?
• Existence
• Construction
• Enumeration
• Generation (Our focus for today!)
• Optimization



Section 1

Generating Tuples



A Classic Problem

• Suppose we wanted to generate through all binary numbers from
00000000 = 0 through to 11111111︸ ︷︷ ︸

8 1s

= 28 − 1

▶ Or more generally, 0 through 2n - 1

• Equivalent to generate tuples (an, . . . , a1) with ai ∈ { 0, 1 }
▶ We write the tuple in this direction since we write numbers with

bigger “places” to the left of smaller places
• We could even talk about other bases, like wanted to visit all base

10 numbers from 0 through 10n − 1
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The Obvious Algorithm (for n = 8)

GenBinary():
For a1 ∈ { 0, 1 } :

For a2 ∈ { 0, 1 } :
For a3 ∈ { 0, 1 } :

For a4 ∈ { 0, 1 } :
For a5 ∈ { 0, 1 } :

For a6 ∈ { 0, 1 } :
For a7 ∈ { 0, 1 } :

For a8 ∈ { 0, 1 } :
print(a1a2a3a4a5a6a7a8)
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We Can Do Better

• What if we wanted to change our base from binary to base 10, or
arbitrary base?
▶ Mixed base, also known as mixed radix [Knu97], numbers:[

an, an−1, . . . , a1
mn, mn−1, . . . , m1

]

▶ Examples for base 2 and time (0 index your days and months):

1010012 =

[
1, 0, 1, 0, 0, 1
2, 2, 2, 2, 2, 2

]
,

2002-06-29 03:25:789 =

[
2002, 06, 29, 03, 25, 789
∞, 12, 30, 24, 60, 1000

]
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Mixed-Radix Generation

Algorithm-M(m[1..n]):
1: a[i]← 0 for 1 ≤ i ≤ n
2: a[n+ 1]← 0, m[n+ 1]← 2 ⟨⟨Exercise: why do we need this? ⟩⟩
3: while True:
4: print(a[n] · · · a[1])
5: j ← 1
6: while a[j] = m[j]− 1
7: a[j]← 0
8: j ← j + 1
9: if j = n+ 1:
10: return
11: a[j]← a[j] + 1

By setting m[i] = 2 for all i, we can print every binary number from 0 to
2n − 1



Questions?



Section 2

The Gray Code



Becoming Lazier

• Consider the fact that I am extremely lazy

• If we are counting in binary and we count 01111→ 10000
▶ We have to change a whole 5 digits The horror! The horror!
▶ The inner while loop (Line 6) of Algorithm-M runs 5 times

• n digits means 2n numbers are generated, so O (2n) is our limit
• For each digit, this inner while loop runs O(n) times, resulting in

total runtime O (n2n)

• Is there a way to avoid this and shave off a factor of O(n)?
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Gray Binary Code

• First appeared in a 1941 patent #2307868 by George R. Stibitz
• Frank Gray mentioned the code in a 1947 patent #2632058

▶ As tradition, he gets the credit rather than the people before him

• He described a systematic way to generate binary where each
successive number changes by exactly 1 digit for each step
• Louis Gros published an anonymous note “Théorie du Baguenodier”

in Lyonnais, 1872, describing the Gray binary code in relation to
solving an ancient Chinese puzzle [Gro72].
▶ So in reality, he is the inventor
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Recursive Definition

We can define the Gray Code recursively as follows

Γ0 = ε

Γn+1 = 0 · Γn, 1 · ΓR
n

(1)

where ΓR
n is Γn and 0 · Γn stands for appending 0 to every element in Γn

You can use this to prove that gray(k) = k ⊕
⌊
k
2

⌋

Exercise: Prove that Γn generates all binary strings 0 to 2n − 1
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Recursive Gray Code Generation

Here is some recursive code that makes use of the formula in Eq. 1

RecursiveGray(n):
1: if n = 0:
2: return [“ ”]
3: Γn ← [ ]
4: Γn−1 ← RecursiveGray(n− 1)
5: for num ∈ Γn−1:
6: Γn.append(0 · num)
7: for num ∈ ΓR

n−1:
8: Γn.append(1 · num)
9: return Γn

Can we do this iteratively?
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Non-recursive Gray Code Generation

Algorithm-G(n):
1: a[i]← 0 for 1 ≤ i ≤ n
2: a[0]← 0 ⟨⟨Exercise: why do we need this? ⟩⟩
3: while True:
4: print(a[n] · · · a[1])
5: a[0]← 1− a[0]
6: j ← minimum j ≥ 1 such that a[j − 1] = 1
7: if j = n+ 1:
8: return
9: a[j]← 1− a[j]

We haven’t really gotten rid of the inner while loop (the minimum on
Line 6 is kind of a while loop). However, we only edit the array a once
per iteration of the outer loop.
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Loopless Non-recursive Gray Code Generation

Algorithm-L(n):
1: a[i]← 0 for 1 ≤ i ≤ n
2: f [i]← i for 1 ≤ i ≤ n+ 1
3: while True:
4: print(a[n] · · · a[1])
5: j ← f [1]
6: f [1]← 1
7: if j = n+ 1:
8: return
9: a[j]← 1− a[j]
10: f [j]← f [j + 1]
11: f [j + 1]← j + 1



What About Other Bases?

• Can we do this change-one-digit-at-a-time thing with other bases?

▶ Yes! We can even do it looplessly
• There are two somewhat natural ways of doing this: reflected

000, 001, . . . , 009, 019, 018, . . . , 011, 010, 020, 021, 022, . . . , 091, 090, 190, 191, . . .

• and modular
000, 001, . . . , 009, 019, 010, . . . , 017, 018, 028, 029, 020, . . . , 099, 090, 190, 191, . . .

• The following algorithm will generate the reflected sequence.
▶ Exercise: Modify it to produce the modular sequence
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Loopless Reflected Mixed-Radix Gray Generation
Algorithm-H(m[1..n]):

1: a[i]← 0 for 1 ≤ i ≤ n
2: f [i]← i for 1 ≤ i ≤ n+ 1
3: d[i]← 1 for 1 ≤ i ≤ n ⟨⟨directions⟩⟩
4: while True:
5: print(a[n] · · · a[1])
6: j ← f [1]
7: f [1]← 1
8: if j = n+ 1:
9: return
10: a[j]← a[j] + d[j]
11: if a[j] = 0 or a[j] = m[j]− 1:
12: d[j]← −d[j] ⟨⟨change directions⟩⟩
13: f [j]← f [j + 1]
14: f [j + 1]← j + 1



Questions?



Section 3

Towers of Hanoi and A Chinese Ring Puzzle



Monks Moving Disks Until the World Ends
• In 1883, French mathematician Édouard Lucas introduced his

puzzle “The Towers of Hanoi”

• Since then, this puzzle has had many mythical origin stories written
about it

Figure: From [Eri19]
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Recursively Solving the Puzzle

Figure: From [Eri19]

RecursiveHanoi(n):
1: Move the top n− 1 disks using RecursiveHanoi(n− 1)
2: Move the nth disk
3: Move the top n− 1 disks using RecursiveHanoi(n− 1)
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Iteratively Solving the Puzzle

• The recursive solution takes O (2n) time
• We can also solve the problem iteratively as follows

IterativeHanoi(n):
1: until solved:
2: Move the small disk to the right
3: Make the only legal move not involving the small disk

Figure: From [Sed03]



Solving the Puzzle using Binary
• The following iterative algorithm uses binary to iteratively solve the

puzzle
• Suppose the smallest disk is disk 1 and the largest disk is n

BinaryHanoi(n):
i← 0
while i < 2n − 1:

i← i+ 1
d← position of least significant 1 in binary(i)
if d = 1:

Move the small disk to the right
else:

Move disk d to the only legal position

Figure: From [3Bl16]



A Chinese Ring Puzzle
• There is a similar puzzle, whose exact origin is unknown

▶ In Chinese, it is known as “Jiu Lian Huan”
▶ In French, it is known as “Baguenaudier”

Figure: From [ZR21]



Allowed Moves
There are two legal moves we can make at each time
• We can remove and replace the rightmost ring at any time
• Any other ring can be removed or replaced as long as the following

two conditions are met:
▶ The ring to its right is on the bar
▶ Every ring to the right of that is off the bar

Figure: From [ZR21]



Solving the Puzzle

Figure: From [ZR21]



Algorithmically Solving the Puzzle

• In his “Théorie du Baguenodier” Louis Gros connected the Gray
binary code to solving this ring puzzle
• Let us abstract the puzzle into a series of binary digits

1111

• The binary digit will be 1 if the ring is on and 0 otherwise



Algorithmically Solving the Puzzle
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0000

This is Gray binary code starting from 1111 and counting down to 0000
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Questions?



It has been said that combinatorics is both the easiest and hardest field of

mathematics. Easy since a lot of it requires no prerequisite knowledge. Hence a

High School Student can do work in it. Hard because a lot of it requires no

prerequisite knowledge. Hence you can’t easily apply continuous techniques.

— WILLIAM GASARCH (2019)

https://www.cs.umd.edu/~gasarch/open/pnpme.pdf
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