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Percolation



Percolating Water Problem

• Assume that some liquid is poured on top of some porous material.
Will the liquid be able to make its way from hole to hole and reach
the bottom?
▶ Model: three-dimensional network of n× n× n vertices, usually

called "sites", in which the edge or "bonds" between each two
neighbors may be open or closed

▶ Probabilistic: A bond is open with probability p and closed 1− p.
• For a given p, what is the probability that an open path exists from

the top to the bottom?



Below 50% Openness



Above 50% Openness
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The Phase Transition™



New Topic: Random Graphs [FK23]

• Idea: Define some parameters and generate a graph probabilistically
• Erdős–Rényi Model: The most common model
• G(n, p): Add n nodes, then add edges with probability p

• G(n,M): Add n nodes, then pick uniformly from all configurations
of M edges



The "Percolated" Graph

• The ER graph’s definition is closely related to the percolation
problem defined earlier
• G(n,p): each edge has a fixed probability of being present or

absent, independently of the other edges
• An ER graph also has a percolation constant!
• The evolution of the ER graph structure with increasing p can be

very precisely proven [not in this presentation] but it is dominated
by the same critical percolation constant of p = 1

n



Erdős–Rényi Phase Transition: p = 75% 1
n



Erdős–Rényi Phase Transition p = 125% 1
n



Generalizing

• The giant connected component is made up of nodes connected to
each other
• The giant connected component is made up of pairs of nodes

connected to other, possibly overlapping pairs of nodes
• Can we find denser "clusters" by finding cliques connected to other

cliques? Yes!
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Cliques



Cliques Review

• Some definitions for review:
• Definition: A clique c is a fully connected set of nodes, i.e. every

pair of its vertices is connected by a link in the graph.
• Definition: A k-clique ck is a clique of k nodes.
• Definition: Two k-cliques are said to be adjacent if and only if they

share k − 1 nodes.



CPM Community

• Definition: A "clique percolation method" community is defined as
the maximal union of k-cliques that can be reached from each other
through a series of adjacent k-cliques
• How do we intuit what this means?
• Start with a clique "template", and "roll it over" on the graph. {1,

2, 7} rolls over to {1, 2, 3}
• Alternatively, the "Group Chat of Theseus": take one node out of

the clique, include a new one.
• Where are the 3-clique communities on this graph?



Questions?
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Clique Percolation Algorithm



Motivation

• We want to understand the structure of a graph - the
"communities" within it
▶ ex. social media - what topics or communities someone participates

in or follows
▶ ex. biology - identify related proteins within an interaction network

• Our approach (overlapping cliques) is an intuitive and deterministic
definition of a community
• Allows for overlapping communities - many other methods don’t do

this
• Density requirement is freely adjustable via k



Algorithm Requirements

• Subtask: find the cliques
▶ Either find all maximal cliques, or find all k-cliques in a graph
▶ These are both NP-hard problems! Outside the scope of this lecture
▶ A recent CPM paper uses a parallelized algorithm [Dan18]

• Subtask: storing the communities / connected components
▶ We will use a Union-Find data structure (disjoint sets)
▶ UF.MakeSet(): creates a new tree with one node p, corresponding to

a new empty set, and returns p.
▶ UF.Find(p) returns the root of the tree
▶ UF.Union(r1, ..., rl): performs the union of trees represented by their

roots ri by making one root the parent of all others.



Pseudocode

Basic CPM algorithm(G):
1: UF ← Union-Find data structure
2: Dict ← []
3: for each k-clique ck ∈ G do:
4: S ← {}
5: for each (k − 1)-clique ck−1 ⊂ ck do:
6: if ck−1 ∈ Dict.keys() then
7: p← UF.Find(Dict[ck−1])
8: else
9: p← UF.MakeSet()
10: Dict[ck−1] ←p
11: S ← S ∪ {p}
12: UF.Union(S)



Questions?
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Percolation Threshold

• There are also threshold thresholds for clique communities. What
edge probability p is the threshold to producing one giant connected
community in an ER graph?
• Intuition: going back to the "rolling-over" analogy. Within a

"rolling", at the threshold, there should be, in expectation, one
adjacent clique at each clique, to "continue" to build the cluster.
• (k − 1)× (N − k − 1)pk−1

c = 1: candidate vertices to remove ×
candidate vertices to add
• For large N , this comes out to N(k − 1)pk−1

c = 1 [Der05]

pc(k) =
1

[N(k − 1)]
1

k−1

(1)



Optimizations

• The given CPM algorithm is prohibitively expensive in memory
because we store large number of (k − 1)-cliques
• Optimization: instead of disjoint sets of (k − 1) cliques, consider

non-disjoint sets of z-cliques s.t. z < (k − 1) [Bau22]
• why are there fewer z-cliques? Consider binomial theorem, k ≪M

• this leads to an approximation of the previous algorithm, but it is
otherwise very similar and produces very similar results



Questions?
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