
Welcome to SIGma

SIGma



Outline

Officers in No Particular Order

Computing Fibonacci



Anakin

• Math Major
• SIGPwny Crypto1 Gang + Admin team
• CA for CS 173 + CS 475
• Research with Sam

1Not that one, the other one



Sam

• Summer Amazon Intern
• CS Major
• Doing CS 374 Course Dev
• Doing Theory Research with Sariel Har-Peled
• Research with Anakin



Lou

• CS Major
• Current CS 225 CA (past CS 125 and 374 CA)
• Senior, selling soul to finance after this semester



Aditya

• ECE/Math double degree.
• Quantum error correction research w/Prof. Milenkovic.
• CA for ECE 391.
• Other interests: FP, PL, Crypto.



Hassam

• Intern at Amazon over the summer
• CS Major (takes math classes for fun ???)
• SIGPwny Crypto Gang + Admin team + Infra lead
• CA for CS 233, CS 173
• Compiler research



Phil

• CS/Ling Major, Senior
• CA for CS 233
• SIGecom - game theory, economics, and computation



Section 2

Computing Fibonacci



Recursive

Fn =


0 n = 0

1 n = 1

Fn−1 + Fn−2 n ≥ 2

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

0 1 1 2 3 5 8 13 21 34 55 89 144 233



Recursive

Fn =


0 n = 0

1 n = 1

Fn−1 + Fn−2 n ≥ 2

F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13

0 1 1 2 3 5 8 13 21 34 55 89 144 233



Recursive Computation

Figure: From [Eri19]



Can We Do Better?
We can use 12 multiplications to compute x13 as follows:

x→ x2 → x3 → x4 → x5 → x6 → x7 → x8 → x9 → x10 → x11 → x12 → x13

But if we first compute powers as such

x2 ← x · x
x4 ← x2 · x2

x8 ← x4 · x4

Using these we compute x8 · x4 · x1 = x13 in just 5 total multiplications.
We can generalize this using binary

1 1 0 1
8 4 2 1



Can We Do Better?
We can use 12 multiplications to compute x13 as follows:

x→ x2 → x3 → x4 → x5 → x6 → x7 → x8 → x9 → x10 → x11 → x12 → x13

But if we first compute powers as such

x2 ← x · x
x4 ← x2 · x2

x8 ← x4 · x4

Using these we compute x8 · x4 · x1 = x13 in just 5 total multiplications.
We can generalize this using binary

1 1 0 1
8 4 2 1



Can We Do Better?
We can use 12 multiplications to compute x13 as follows:

x→ x2 → x3 → x4 → x5 → x6 → x7 → x8 → x9 → x10 → x11 → x12 → x13

But if we first compute powers as such

x2 ← x · x
x4 ← x2 · x2

x8 ← x4 · x4

Using these we compute x8 · x4 · x1 = x13 in just 5 total multiplications.

We can generalize this using binary

1 1 0 1
8 4 2 1



Can We Do Better?
We can use 12 multiplications to compute x13 as follows:

x→ x2 → x3 → x4 → x5 → x6 → x7 → x8 → x9 → x10 → x11 → x12 → x13

But if we first compute powers as such

x2 ← x · x
x4 ← x2 · x2

x8 ← x4 · x4

Using these we compute x8 · x4 · x1 = x13 in just 5 total multiplications.
We can generalize this using binary

1 1 0 1
8 4 2 1



Building an Algorithm

13 = 8 + 4 + 1 = 11012

Step Bit Power Result
0 1

1 1 x x

2 0 x2 x

3 1 x4 x5

4 1 x8 x13



Building an Algorithm

13 = 8 + 4 + 1 = 11012

Step Bit Power Result
0 1

1 1 x x

2 0 x2 x

3 1 x4 x5

4 1 x8 x13



Building an Algorithm

13 = 8 + 4 + 1 = 11012

Step Bit Power Result
0 1

1 1 x x

2 0 x2 x

3 1 x4 x5

4 1 x8 x13



Building an Algorithm

13 = 8 + 4 + 1 = 11012

Step Bit Power Result
0 1

1 1 x x

2 0 x2 x

3 1 x4 x5

4 1 x8 x13



Building an Algorithm

13 = 8 + 4 + 1 = 11012

Step Bit Power Result
0 1

1 1 x x

2 0 x2 x

3 1 x4 x5

4 1 x8 x13



Building an Algorithm

13 = 8 + 4 + 1 = 11012

Step Bit Power Result
0 1

1 1 x x

2 0 x2 x

3 1 x4 x5

4 1 x8 x13



power(x, n):
1: curr ← 1
2: for i← 1 . . . n :
3: curr ← curr ∗ x
4: return curr

squareMultPower(x, n):
1: res← 1
2: power ← x
3: for bit in binary(n):
4: if bit = 1:
5: res← res ∗ power
6: power ← power ∗ power
7: return res



power(x, n):
1: curr ← 1
2: for i← 1 . . . n :
3: curr ← curr ∗ x
4: return curr

squareMultPower(x, n):
1: res← 1
2: power ← x
3: for bit in binary(n):
4: if bit = 1:
5: res← res ∗ power
6: power ← power ∗ power
7: return res



Matrices

We have the following two linear equations

Fn = Fn−1 + Fn−2

Fn−1 = Fn−1

We can represent this as follows using matrices[
Fn

Fn−1

]
=

[
1 1
1 0

] [
Fn−1

Fn−2

]
=

[
1 1
1 0

]2 [
Fn−2

Fn−3

]
= · · · =

[
1 1
1 0

]n [
1
0

]
We can use squareMultPower to compute this!



Matrices

We have the following two linear equations

Fn = Fn−1 + Fn−2

Fn−1 = Fn−1

We can represent this as follows using matrices[
Fn

Fn−1

]
=

[
1 1
1 0

] [
Fn−1

Fn−2

]

=

[
1 1
1 0

]2 [
Fn−2

Fn−3

]
= · · · =

[
1 1
1 0

]n [
1
0

]
We can use squareMultPower to compute this!



Matrices

We have the following two linear equations

Fn = Fn−1 + Fn−2

Fn−1 = Fn−1

We can represent this as follows using matrices[
Fn

Fn−1

]
=

[
1 1
1 0

] [
Fn−1

Fn−2

]
=

[
1 1
1 0

]2 [
Fn−2

Fn−3

]

= · · · =
[
1 1
1 0

]n [
1
0

]
We can use squareMultPower to compute this!



Matrices

We have the following two linear equations

Fn = Fn−1 + Fn−2

Fn−1 = Fn−1

We can represent this as follows using matrices[
Fn

Fn−1

]
=

[
1 1
1 0

] [
Fn−1

Fn−2

]
=

[
1 1
1 0

]2 [
Fn−2

Fn−3

]
= · · · =

[
1 1
1 0

]n [
1
0

]
We can use squareMultPower to compute this!



Combinatorics

This semester is going to be mainly focused on combinatorics. So let’s
look at one of the most beautiful combinatorial objects in all of
mathematics: Pascal’s Triangle



Pascal’s Triangle



Binomial Coefficients and Pascal’s Triangle

• Blaise Pascal first discussed his triangle in his Traité du Triangle
Arithmétique [Pas65]
▶ One of the first works on probability theory

• Binomial coefficients were first discussed in detail in India in the
tenth–century [Knu97]



Binomial Coefficients and Pascal’s Triangle

• Blaise Pascal first discussed his triangle in his Traité du Triangle
Arithmétique [Pas65]
▶ One of the first works on probability theory

• Binomial coefficients were first discussed in detail in India in the
tenth–century [Knu97]



Binomial Coefficients

• “The number of ways to choose k items from n distinct items”(
n

k

)
=

n!

k!(n− k)!

• “The number of ways to not choose n− k from n distinct items”(
n

k

)
=

(
n

n− k

)



Binomial Coefficients

• “The number of ways to choose k items from n distinct items”(
n

k

)
=

n!

k!(n− k)!

• “The number of ways to not choose n− k from n distinct items”(
n

k

)
=

(
n

n− k

)



Pascal’s Triangle

(
0
0

)
(
1
0

) (
1
1

)
(
2
0

) (
2
1

) (
2
2

)
(
3
0

) (
3
1

) (
3
2

) (
3
3

)
(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1



Pascal’s Triangle

(
0
0

)
(
1
0

) (
1
1

)
(
2
0

) (
2
1

) (
2
2

)
(
3
0

) (
3
1

) (
3
2

) (
3
3

)
(
4
0

) (
4
1

) (
4
2

) (
4
3

) (
4
4

)

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1



A Pattern in the Triangle



A Pattern in the Triangle



Proving the Pattern

Claim:
⌊n2 ⌋∑
k=0

(
n− k

k

)
= Fn+1

We are going to prove this by a combinatorial argument



Staircases

Question: How many ways are there to climb a staircase going one or
two steps at a time?

invisible text to make the next slide transition smoother



Staircases

Question: How many ways are there to climb a staircase going one or
two steps at a time?

We can think of this recursively!



Steps to Compute Steps

• Let the starting step be step 0. Assuming we are on step n ≥ 2,
how did we get here?

▶ Either we took a single step from step n− 1
▶ Or we took two steps from step n− 2

• Combining the number of ways to get to step n− 1 with the
number of ways to get to step n− 2 yields the number of ways to
get to step n

• Sn = Sn−1 + Sn−2

▶ How many ways are there to get to step 0? Exactly 1 (S0 = 1)
▶ How many ways are there to get to step 1? Exactly 1 (S1 = 1)

• Sn = Fn+1



Steps to Compute Steps

• Let the starting step be step 0. Assuming we are on step n ≥ 2,
how did we get here?
▶ Either we took a single step from step n− 1

▶ Or we took two steps from step n− 2

• Combining the number of ways to get to step n− 1 with the
number of ways to get to step n− 2 yields the number of ways to
get to step n

• Sn = Sn−1 + Sn−2

▶ How many ways are there to get to step 0? Exactly 1 (S0 = 1)
▶ How many ways are there to get to step 1? Exactly 1 (S1 = 1)

• Sn = Fn+1



Steps to Compute Steps

• Let the starting step be step 0. Assuming we are on step n ≥ 2,
how did we get here?
▶ Either we took a single step from step n− 1
▶ Or we took two steps from step n− 2

• Combining the number of ways to get to step n− 1 with the
number of ways to get to step n− 2 yields the number of ways to
get to step n

• Sn = Sn−1 + Sn−2

▶ How many ways are there to get to step 0? Exactly 1 (S0 = 1)
▶ How many ways are there to get to step 1? Exactly 1 (S1 = 1)

• Sn = Fn+1



Steps to Compute Steps

• Let the starting step be step 0. Assuming we are on step n ≥ 2,
how did we get here?
▶ Either we took a single step from step n− 1
▶ Or we took two steps from step n− 2

• Combining the number of ways to get to step n− 1 with the
number of ways to get to step n− 2 yields the number of ways to
get to step n

• Sn = Sn−1 + Sn−2

▶ How many ways are there to get to step 0? Exactly 1 (S0 = 1)
▶ How many ways are there to get to step 1? Exactly 1 (S1 = 1)

• Sn = Fn+1



Steps to Compute Steps

• Let the starting step be step 0. Assuming we are on step n ≥ 2,
how did we get here?
▶ Either we took a single step from step n− 1
▶ Or we took two steps from step n− 2

• Combining the number of ways to get to step n− 1 with the
number of ways to get to step n− 2 yields the number of ways to
get to step n

• Sn = Sn−1 + Sn−2

▶ How many ways are there to get to step 0? Exactly 1 (S0 = 1)
▶ How many ways are there to get to step 1? Exactly 1 (S1 = 1)

• Sn = Fn+1



Steps to Compute Steps

• Let the starting step be step 0. Assuming we are on step n ≥ 2,
how did we get here?
▶ Either we took a single step from step n− 1
▶ Or we took two steps from step n− 2

• Combining the number of ways to get to step n− 1 with the
number of ways to get to step n− 2 yields the number of ways to
get to step n

• Sn = Sn−1 + Sn−2

▶ How many ways are there to get to step 0? Exactly 1 (S0 = 1)

▶ How many ways are there to get to step 1? Exactly 1 (S1 = 1)
• Sn = Fn+1



Steps to Compute Steps

• Let the starting step be step 0. Assuming we are on step n ≥ 2,
how did we get here?
▶ Either we took a single step from step n− 1
▶ Or we took two steps from step n− 2

• Combining the number of ways to get to step n− 1 with the
number of ways to get to step n− 2 yields the number of ways to
get to step n

• Sn = Sn−1 + Sn−2

▶ How many ways are there to get to step 0? Exactly 1 (S0 = 1)
▶ How many ways are there to get to step 1? Exactly 1 (S1 = 1)

• Sn = Fn+1



Steps to Compute Steps

• Let the starting step be step 0. Assuming we are on step n ≥ 2,
how did we get here?
▶ Either we took a single step from step n− 1
▶ Or we took two steps from step n− 2

• Combining the number of ways to get to step n− 1 with the
number of ways to get to step n− 2 yields the number of ways to
get to step n

• Sn = Sn−1 + Sn−2

▶ How many ways are there to get to step 0? Exactly 1 (S0 = 1)
▶ How many ways are there to get to step 1? Exactly 1 (S1 = 1)

• Sn = Fn+1



Making Choices

• There is another angle to the staircase problem

• We can just choose which steps to take two steps from, and fill the
rest with single steps



Making Choices

• There is another angle to the staircase problem
• We can just choose which steps to take two steps from, and fill the

rest with single steps



Placing Steps

• We have to choose where to place our steps of size 2

• If we have n steps, how many ways can we place k steps of size 2?

(
n− k

k

)
ways

• How many possible values of k are there?⌊n
2

⌋

Thus,
⌊n2 ⌋∑
k=0

(
n− k

k

)
= Sn = Fn+1



Placing Steps

• We have to choose where to place our steps of size 2

• If we have n steps, how many ways can we place k steps of size 2?(
n− k

k

)
ways

• How many possible values of k are there?⌊n
2

⌋

Thus,
⌊n2 ⌋∑
k=0

(
n− k

k

)
= Sn = Fn+1



Placing Steps

• We have to choose where to place our steps of size 2

• If we have n steps, how many ways can we place k steps of size 2?(
n− k

k

)
ways

• How many possible values of k are there?

⌊n
2

⌋

Thus,
⌊n2 ⌋∑
k=0

(
n− k

k

)
= Sn = Fn+1



Placing Steps

• We have to choose where to place our steps of size 2

• If we have n steps, how many ways can we place k steps of size 2?(
n− k

k

)
ways

• How many possible values of k are there?⌊n
2

⌋

Thus,
⌊n2 ⌋∑
k=0

(
n− k

k

)
= Sn = Fn+1



Placing Steps

• We have to choose where to place our steps of size 2

• If we have n steps, how many ways can we place k steps of size 2?(
n− k

k

)
ways

• How many possible values of k are there?⌊n
2

⌋

Thus,
⌊n2 ⌋∑
k=0

(
n− k

k

)
= Sn = Fn+1



Questions?



[Combinatorics] has a relation to almost every species of useful knowledge that the

mind of man can be employed upon.

— JAMES BERNOULLI, Ars Conjectandi (“The Art of Conjecturing”) (1713)



Bibliography

Jeff Erickson.
Algorithms.
1st edition, 06 2019.

Donald E. Knuth.
The Art of Computer Programming, Vol. 1: Fundamental
Algorithms.
Addison-Wesley, Reading, Mass., third edition, 1997.

Blaise Pascal.
Traité du triangle arithmétique , avec quelques autres petits traitez
sur la mesme matière. Par Monsieur Pascal.
G. Desprez, 1665.


	Officers in No Particular Order
	Computing Fibonacci

