Permutations Exercise Answers

Delay between permutations in AlgorithmL

Between visiting each permutation, we run at least one while loop. These loops take $O(n)$ time in the worst case. Thus, there is an $O(n)$ time delay between visiting permutations

Runtime of AlgorithmL

For n items, there are $O(n!)$ possible permutations to visit. Then we have $O(n)$ delay between visiting each permutation. Thus, the overall runtime is $O(n \cdot n!)$

Number of decrements of \boldsymbol{j} in AlgorithmL

Suppose all elements in S are distint. Exactly half of the possible permutations of S have that $s_{n-1}<s_{n}$. Thus, the loop will not run for $\frac{n!}{2}$ permutations of S. Note: Exercise 1 of [Knu11, Chapter 7.2.1.2] talks about how to modify AlgorithmL to take advantage of this fact and obtain a slightly faster algorithm.

References

[Knu11] Donald E. Knuth. The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1. Addison-Wesley Professional, 2011. ISBN: 0201038048.

