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Section 1

Background



Subsection 1

Probability



A Probability Refresher

• (Discrete) probability distribution: given a set S assign some
probability pi to each element, so that

P
pi = 1

• A random variable X from a distribution D is a variable whose
value is randomly chosen according to some probability distribution
D. Often denoted X ⇠ D.

• Expected value: suppose S ✓ R, then E[X] =
P

piSi. Intuitively, if
we picked a bunch of X following D, this is the average value we’d
see.

• Expectation is a linear operator: E[X + Y ] = E[X] + E[Y ]
• Variance: Var(X) = E[X2]� E[X]2, a low variance indicates that

most of the time, when we pick X it will be close to E[X]
I Note that for c 2 R, Var(cX) = c

2Var(X)
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Even More Probability

• Normal distribution: N (µ,�2) = 1
�
p
2⇡

exp
⇣
�1

2

�
x�µ

�

�2⌘

• Normal distribution is 2-stable: for X ⇠ N (µ1,�
2
1) and

Y ⇠ N (µ2,�
2
2), X + Y ⇠ N (µ1 + µ2,�

2
1 + �

2
2)

• �
2(k) distribution: Sum of k N (0, 1) random variables, has

expected value k

• Bernoulli distribution: If X ⇠ Bernoulli(p), X is 1 with probability
p and 0 with probability (1� p)
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Independence and Inequalities

• A set of random variables is k-wise independent iff for any k

variables in the set, f(x1, . . . , xk) = f(x1) · · · f(xk)

• For k-wise independent random variables, E
hQ

k

i=1Xi

i
=

Q
k

i=1 E[xi]

I Important: k-wise independence implies (k � 1)-wise independence
• Chebyshev’s inequality: P(|X � E[X]| � k�)  1

k2

• Chernoff bound: Let X be sum of h fully independent Bernoulli
RVs, and � � 1. P(X > (1 + �)E[X])  e

��
2
µ/3
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Subsection 2

Streaming and Sketching Algorithms



Intro to Streaming Algorithms

• Streaming model: your algorithm receives inputs one-by-one, and
you don’t know how many inputs you’ll receive. Too many inputs
to store them all and compute later

• (*) Example: suppose you want to calculate the k most watched
YouTube videos today. It takes too much space to store all the
YouTube videos and associated view counters, so you want an
algorithm that does the following: upon recieving a YouTube video
ID, update some data structure and continue without storing
anything on disk. At the end of the day, this data structure should
tell you the k most viewed videos.

• (*) The above is possible to do exactly with only O(k) space, but
this is rare. Most streaming algorithms will only output
approximates that are good with some probability
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A Template for Sketching Algorithms

• First, output a random variable Z such that E[Z] = g(�) where
g(�) is the function we’re estimating for the stream �

• Usually Z will have high variance, typically Var(Z)  g(�)

• How to reduce variance? Run the streaming algorithm h times in
parallel, and let Z

⇤ = 1
h

P
Zi

Var(Z⇤) =
1

h
Var(Z1) and E[Z⇤] = E[Z1]

• (*) By Chebyshev’s inequality,

P (|Z⇤ � g(�)| > ✏g(�))  ✏
2

h

• (*) So, pick h = 4
✏2

for constant failure probability of 1
4



The Median Trick

• Next goal: |Z⇤ � g(�)| > ✏g(�) with some small probability �

• Naive approach: do Chebyshev’s again. Requires O
�

1
�✏2

�
parallel

copies. We want to do better
• Consider parallel copies Z

⇤
1 , . . . , Z

⇤
k

that each fail with probability
1/4

• Our intuition tells us the median of these estimators should be
“good" but how good?

• (*) Let Xi = 1 iff the ith parallel copy fails, so then
Xi ⇠ Bernoulli(1/4)

• (*) Define X =
P

Xi, so then E[X] = k

4
• (*) By Chernoff bound,

P
✓
X � (1 + 1)

k

4

◆
 e

�k/12

• (*) So, pick k = O(log(1/�)). Only running O

✓
log( 1

� )
✏2

◆

independent copies of our algorithm!
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Section 2

Streaming `2 Estimation



Frequency Moment Estimation

• Problem: we receive a stream � of values e1, · · · 2 Z where
1  ei  n for some n we know apriori

• Define the frequency vector to be f(�) = (f1, . . . , fn) where fi is the
number of times we’ve seen i

• Goal: estimate ||f(�)||22 with only O(polylog(n)) space
• Recall the definition of L2 norm:

||f(�)||22 =
nX

i=1

f
2
i
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AMS F2 Estimation

• Intuition: keep a single variable Z so that we can output Z
2 as our

estimate of ||f(�)||22

• (*) Idea: create some random variable Yi for each index so that
E[Z2] = ||f(�)||22. In particular, Z =

P
Yifi

E[Z2] =
X

f
2
i Y

2
i + 2

X

i 6=j

fifjYiYj

• (*) We need Yi to be pairwise independent and satisfy E[YiYj ] = 0
and E[Y 2

i
] = 1

• (*) Solution: Yi = 1 with probability 1
2 and Yi = �1 with

probability 1
2
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AMS F2 Estimation Continued

• Creating O(n) random variables takes up too much space!
• Solution: O(1)-wise independent hash family of functions
[n] ! {�1, 1} can be stored in O(polylog(n)) space

• (*) Replace each Yi with h(i), and the analysis is the exact same
• (*) Similar analysis shows E[Z4]  2||f(�)||22, so we can apply

average and median idea from before

def ams_f2:

let h be a hash function from hash family H

let z = 0

while i is an item from stream

z = z + h(i)

output z
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• Creating O(n) random variables takes up too much space!
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Extending F2 Estimation

• Note that we never used the fact that fi was positive or integral
• Richer model: receive a stream of updates of the form (i,�i)

representing a change to the ith coordinate of our vector

def l2_estimate:

let h be a hash function from hash family H

let z = 0

while (i,d) is an item from stream

z = z + h(i)d

output z
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Section 3

From Stream to Matrix



Linear Sketching

• What we just created is a linear sketch: call our algorithm C. We
can show that C(�1 + �2) = C(�1) + C(�2), since each iteration we
add to Z

• (*) Geometric interpretation: our algorithm is an log(1/�) logn
✏2

⇥ n

matrix M of {�1, 1} values, each row is a parallel copy of the
streaming algorithm

• (*) Now we have Mx = y where y is a vector whose length is
similar to that of x but is in lower dimension

• (*) Next goal: generalize this idea so that we can reduce the
dimension of a set of vectors while preserving pairwise distances

• (*) Useful in real-world applications such as nearest neighbors, ML,
etc
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The JL Lemma

• Let M be an k⇥ n matrix where each entry is chosen independently
from N (0, 1)

• Claim: for k = ⌦
⇣
log(1/�)

✏2

⌘
, we have that with probability 1� �,

|| 1p
k
Mx||2 = (1± ✏)||x||2 for fixed x 2 Rn

• Immediate corollary: Let S be a set of k vectors in Rn, we can
preserve pairwise distances with high probability by picking
k = ⌦

⇣
logn
✏2

⌘
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JL Lemma: Idea of Proof

• Fix some vector x (wlog, let ||x|| = 1) and use 2-stability of Normal
distribution

• (*) Let y = Mx, so then yi =
P

k

j=1Mijxi

• (*) y is a Normal vector in Rk, and each yi is N (0, 1) (variance
because

P
x
2
i
= 1)

• (*) Let ↵ =
P

y
2
i
, so then ↵ ⇠ �

2(k)

• (*) Thus P((1� ✏)2k  ↵  (1 + ✏)2k) � 1� 2eO(1)✏2k

• (*) Picking k = ⌦
⇣
log(1/�)

✏2

⌘
gets us the probability we want
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Section 4

Conclusion



JL Lemma: Intuition and Application

• Why does projecting to a random subspace work? A large enough
random subspace means errors induced by “bad vectors" (i.e. those
orthogonal to many rows in the matrix) have extremely low
probability of ocurring

• Useful for tasks such as clustering/ML: things closer together/more
similar in low dimension will be close in high dimension, so can
reduce dimension and speed up clustering

• Coreset generation: Many hard geometric problems have fast
approximate solutions via coreset technique, which generates a set
S
0 from input S so that running an exact algorithm on S

0 generates
a high accuracy approximation for that algorithm on S. JL
technique can be used in generating coresets

• Key advantage of JL is that it is oblivious to data
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One more thing. . .

• JL Lemma extends to preserving vector distances in entire
subspaces of Rn!

• Let E be a linear subspace of dimension d

• Can preserve distances between vectors in E with k = ⌦
⇣
d log(1/�)

✏2

⌘

• Works for all vectors in E, even though there are infinitely many!
• Poof: consider partitioning the d dimensional unit ball into small

hypercubes with small side length. Show that preserving lengths of
vectors to these hypercubes is sufficient to preserve lengths of all
vectors.
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