Week 11
Streaming Algorithms and the JL Lemma

Ryan Ziegler

Outline

Background
Probability
Streaming and Sketching Algorithms

Streaming /o Estimation

From Stream to Matrix

Conclusion

Section 1

Background

Subsection 1

Probability

A Probability Refresher

® (Discrete) probability distribution: given a set S assign some
probability p; to each element, so that) p; =1

6"'?‘216/153

P(RY=>

P(6)= %

P(®) ;@/K
\

—

A Probability Refresher

® (Discrete) probability distribution: given a set S assign some
probability p; to each element, so that) p; =1

® A random wvariable X from a distribution D is a variable whose

value is randomly chosen according to some probability distribution
D. Often denoted X ~ D.

[ES:.XJ ;2\3162
[‘ng»f\’} = (B J* KEE(J

(o0 Tl X) T PEC T

2

A Probability Refresher

® (Discrete) probability distribution: given a set S assign some
probability p; to each element, so that) p; =1

® A random wvariable X from a distribution D is a variable whose

value is randomly chosen according to some probability distribution
D. Often denoted X ~ D.

® Expected value: suppose S C R, then E[X| = > p;S;. Intuitively, if
we picked a bunch of X following D, this is the average value we’d
see.

A Probability Refresher

® (Discrete) probability distribution: given a set S assign some
probability p; to each element, so that) p; =1

® A random wvariable X from a distribution D is a variable whose

value is randomly chosen according to some probability distribution
D. Often denoted X ~ D.

® Expected value: suppose S C R, then E[X| = > p;S;. Intuitively, if
we picked a bunch of X following D, this is the average value we’d
see.

® Expectation is a linear operator: E[X + Y] = E[X]| + E[Y]

A Probability Refresher

® (Discrete) probability distribution: given a set S assign some
probability p; to each element, so that) p; =1

® A random wvariable X from a distribution D is a variable whose

value is randomly chosen according to some probability distribution
D. Often denoted X ~ D.

® Expected value: suppose S C R, then E[X| = > p;S;. Intuitively, if
we picked a bunch of X following D, this is the average value we’d
see.

® Expectation is a linear operator: E[X + Y] = E[X]| + E[Y]

® Variance: Var(X) = E[X?] — E[X]?, a low variance indicates that
most of the time, when we pick X it will be close to E[X]

A Probability Refresher

® (Discrete) probability distribution: given a set S assign some
probability p; to each element, so that) p; =1

® A random wvariable X from a distribution D is a variable whose

value is randomly chosen according to some probability distribution
D. Often denoted X ~ D.

® Expected value: suppose S C R, then E[X| = > p;S;. Intuitively, if
we picked a bunch of X following D, this is the average value we’d
see.

® Expectation is a linear operator: E[X + Y] = E[X]| + E[Y]

® Variance: Var(X) = E[X?] — E[X]?, a low variance indicates that
most of the time, when we pick X it will be close to E[X]

» Note that for ¢ € R, Var(cX) = ¢*Var(X)

Even More Probability
/((0(\\ £ =0 Vor =1

* Normal distribution: N (i, 0?) = —— exp (_l (M)Q)

oV 2w

/\ v oo
e

X, X NNR/\/\(O"\ XY 1= ol me\ Z

Even More Probability

* Normal distribution: N(u,0?) = —— exp (_l (M)Q)

oV2m 2 o
* Normal distribution is 2-stable: for X ~ A (u1,0%) and
Y ~ N(p2,03), X +Y ~ N(u1 + pa, 07 + 03)

Even More Probability

* Normal distribution: N (i, 0?) = —— exp (_l (ﬂ)z)

oV2m 2 o
* Normal distribution is 2-stable: for X ~ A (u1,0%) and
Y ~ N(p2,03), X +Y ~ N(u1 + pa, 07 + 03)

* x2(k) distribution: Sum of £ A(0,1) random variables, has
expected value k

Even More Probability

* Normal distribution: N (i, 0?) = —— exp (_l (M)Q)

oV2m 2 o
* Normal distribution is 2-stable: for X ~ A (u1,0%) and
Y ~ N(p2,03), X +Y ~ N(u1 + pa, 07 + 03)

* x2(k) distribution: Sum of £ A(0,1) random variables, has
expected value k

® Bernoulli distribution: If X ~ Bernoulli(p), X is 1 with probability
p and 0 with probability (1 — p)

2

Independence and Inequalities

X X

® A set of random variables is k-wise independent iff for any k
variables in the set, f(x1,...,z;) = f(z1) - f(xk)

Independence and Inequalities

® A set of random variables is k-wise independent iff for any k
variables in the set, f(x1,...,z;) = f(z1) - f(xk)

® For k-wise independent random variables, E [Hle XZ} = Hle E|x;]

Independence and Inequalities

® A set of random variables is k-wise independent iff for any k
variables in the set, f(x1,...,z;) = f(z1) - f(xk)

® For k-wise independent random variables, E [Hle XZ} = Hle E|x;]

» Important: k-wise independence implies (k — 1)-wise independence

Independence and Inequalities

® A set of random variables is k-wise independent iff for any k
variables in the set, f(x1,...,25) = f(z1) - f(zg)

® For k-wise independent random variables, E [Hle XZ} = Hle E|x;]

» Important: k-wise independence implies (k — 1)-wise independence

* Chebyshev’s inequality: P(|X — E[X]| > ko) < &

L, &

[Var

Independence and Inequalities

® A set of random variables is k-wise independent iff for any k
variables in the set, f(x1,...,z;) = f(z1) - f(xk)

® For k-wise independent random variables, E {Hle XZ} = H,’le E|x;]
» Important: k-wise independence implies (k — 1)-wise independence

® Chebyshev’s inequality: P(|X — E[X]| > ko) < k:i?

® Chernoff bound: Let X be sum of A fully independent Bernoulli
RVs, and 6 > 1. P(X > (1+)E[X]) < =0 1/3

X, ., Y. ~pewelilp) X=2
IE(X Jn o Z

Subsection 2

Streaming and Sketching Algorithms

Intro to Streaming Algorithms

® Streaming model: your algorithm receives inputs one-by-one, and
you don’t know how many inputs you’ll receive. Too many inputs
to store them all and compute later

loo wowy Oewens by dere v w\ewxdw\,

= &do\inenr Spuc
X\ €@t o gm0 g
\/{c\Qt\ \](um‘ Wonk We \g w\ogs(wg}(d/m}) \;Q\\QOS %0@07

DY \\Q@ﬁ Mo g W e o g
JMisva- Gries T\

&C@e\) o Onla deifoe uxith OQ\c’) 5&)01;9(Z

...
Intro to Streaming Algorithms

® Streaming model: your algorithm receives inputs one-by-one, and
you don’t know how many inputs you’ll receive. Too many inputs
to store them all and compute later

® (*) Example: suppose you want to calculate the k£ most watched
YouTube videos today. It takes too much space to store all the
YouTube videos and associated view counters, so you want an
algorithm that does the following: upon recieving a YouTube video
ID, update some data structure and continue without storing
anything on disk. At the end of the day, this data structure should
tell you the £ most viewed videos.

Intro to Streaming Algorithms

® Streaming model: your algorithm receives inputs one-by-one, and
you don’t know how many inputs you’ll receive. Too many inputs
to store them all and compute later

® (*) Example: suppose you want to calculate the k£ most watched
YouTube videos today. It takes too much space to store all the
YouTube videos and associated view counters, so you want an
algorithm that does the following: upon recieving a YouTube video
ID, update some data structure and continue without storing
anything on disk. At the end of the day, this data structure should
tell you the £ most viewed videos.

® (*) The above is possible to do ezactly with only O(k) space, but
this is rare. Most streaming algorithms will only output
approximates that are good with some probability

OU&P\A’ a vfwﬁaw varinbly 2

Bz)= ()
L‘)q‘ S OW hiem
geall, a2 € glo)
2% - % 7 Z, whee 2 is oa 1) COFY
ok ol Ver(2") 28 Vor (2)

R Avan @(ﬂ’\)\ Z egkﬁg < g = ((1eyshey
G tow by el Wbt

&\-Q(is) i£ ¢<¢ 000, heloov
nek gl we week b okpdY e o~
50 Kok
05 \2 ’3&0‘\\ S za(«y; £
Wob w/ V/a\;. 2

b

2?/"’/ 2|5

<

Xi 2L &z Wy U ghhewse

wodioe 0 bad (£ N bed W values

NeaXe Pig-gal > eQ(cr\} s N> —%

S g ol Py,
Lexp(- /fa7 = E- 0@79‘/6\

A Template for Sketching Algorithms

® First, output a random variable Z such that E[Z] = g(o) where
g(o) is the function we’re estimating for the stream o

e Usually Z will have high variance, typically Var(Z) < g(o)

® How to reduce variance?” Run the streaming algorithm A times in
parallel, and let Z* = + >~ Z;

Var(2*) = %Var(Zl) and E[Z*] = E[Z4]

® (*) By Chebyshev’s inequality,

62

P (12" = glo)| > eg(o) < 5

® (*) So, pick h = ;iz for constant failure probability of

The Median Trick
® Next goal: |Z* — g(0)| > eg(o) with some small probability §

The Median Trick

® Next goal: |Z* — g(0)| > €g(o) with some small probability §
® Naive approach: do Chebyshev’s again. Requires O (%) parallel
copies. We want to do better

The Median Trick

® Next goal: |Z* — g(0)| > €g(o) with some small probability §

® Naive approach: do Chebyshev’s again. Requires O (%) parallel
copies. We want to do better

® Consider parallel copies Z7,..., Z; that each fail with probability
1/4

The Median Trick

® Next goal: |Z* — g(0)| > €g(o) with some small probability §

® Naive approach: do Chebyshev’s again. Requires O (%) parallel
copies. We want to do better

® Consider parallel copies Z7,..., Z; that each fail with probability
1/4

® Qur intuition tells us the median of these estimators should be
“ogood" but how good?

The Median Trick

® Next goal: |Z* — g(0)| > €g(o) with some small probability §

® Naive approach: do Chebyshev’s again. Requires O (%) parallel
copies. We want to do better

® Consider parallel copies Z7,..., Z; that each fail with probability
1/4

® Qur intuition tells us the median of these estimators should be
“ogood" but how good?

® (*) Let X; = 1 iff the ith parallel copy fails, so then
X; ~ Bernoulli(1/4)

The Median Trick

® Next goal: |Z* — g(0)| > €g(o) with some small probability §

® Naive approach: do Chebyshev’s again. Requires O (%) parallel
copies. We want to do better

® Consider parallel copies Z7,..., Z; that each fail with probability
1/4

® Qur intuition tells us the median of these estimators should be
“ogood" but how good?

® (*) Let X; = 1 iff the ith parallel copy fails, so then

X; ~ Bernoulli(1/4)

(*) Define X = 3" X, so then E[X] = &

The Median Trick

® Next goal: |Z* — g(0)| > €g(o) with some small probability §

® Naive approach: do Chebyshev’s again. Requires O (%) parallel
copies. We want to do better

® Consider parallel copies Z7,..., Z; that each fail with probability
1/4

® Qur intuition tells us the median of these estimators should be
“ogood" but how good?

® (*) Let X; = 1 iff the ith parallel copy fails, so then

X; ~ Bernoulli(1/4)

(*) Define X = 3" X, so then E[X] = &

(*) By Chernoft bound,

P (X > (14 1)%) < e k/12

The Median Trick

® Next goal: |Z* — g(0)| > €g(o) with some small probability §

® Naive approach: do Chebyshev’s again. Requires O (%) parallel
copies. We want to do better

® Consider parallel copies Z7,..., Z; that each fail with probability
1/4

® Qur intuition tells us the median of these estimators should be
“ogood" but how good?

® (*) Let X; = 1 iff the ith parallel copy fails, so then

X; ~ Bernoulli(1/4)

(*) Define X = 3" X, so then E[X] = &

(*) By Chernoft bound,

P (X > (1+ 1)%) < e k12

® (*) So, pick k = O(log(1/4)). Only running O (bi@) Z

Section 2

Streaming ¢ Estimation

Frequency Moment Estimation

® Problem: we receive a stream o of values ey, -+ € Z where
1 <e; <n for some n we know apriori

Frequency Moment Estimation

® Problem: we receive a stream o of values ey, -+ € Z where
1 <e; <n for some n we know apriori

® Define the frequency vector to be f(o) = (fi1,..., fn) where f; is the
number of times we’ve seen 17

q—tf.\r \,9,7)
¢ "K@*(®r0(01 \ OA)

Frequency Moment Estimation

® Problem: we receive a stream o of values ey, -+ € Z where
1 <e; <n for some n we know apriori

® Define the frequency vector to be f(o) = (fi1,..., fn) where f; is the
number of times we’ve seen 17

® Goal: estimate ||f(o)||3 with only O(polylog(n)) space

Frequency Moment Estimation

® Problem: we receive a stream o of values ey, -+ € Z where
1 <e; <n for some n we know apriori

® Define the frequency vector to be f(o) = (fi1,..., fn) where f; is the
number of times we’ve seen 17

® Goal: estimate ||f(o)||3 with only O(polylog(n)) space

® Recall the definition of Lo norm:

1f(o)ls =) f7
1=1

AMS F2 Estimation

 Intuition: keep a single variable Z so that we can output Z? as our

cimate o (o) Er24)< IR 3
Z- 257,
E{_Za:) _ 2&9 {ES:\(?BJ? ¢ Q\ 2:\ \JE{\T, \(\3]&\\‘9\{

~—

EDD 1 ELRy) EEFIRR

let \f, e FUU iV\e) Y; = 4 wl \)Vd[o .5 Z
\{; = W{ pfdb - ‘-7_

AMS F2 Estimation

 Intuition: keep a single variable Z so that we can output Z? as our
estimate of || f(o)||3

® (*) Idea: create some random variable Y; for each index so that
E[Z?] = ||f(0)]|3. In particular, Z = >_Y; f;

E[Z%] =) [Y?P+2) fif;YiY;
i#]

® (*) We need Y; to be pairwise independent and satisfy E[Y;Y;] =0
and]E[Y,LQ] —1

2

AMS F2 Estimation

 Intuition: keep a single variable Z so that we can output Z? as our

estimate of || f(o)||3
® (*) Idea: create some random variable Y; for each index so that
E[Z?] = ||f(0)]|3. In particular, Z = >_Y; f;

ELZ%) = 3 FIVE 42D FifiYiY;
i#]
® (*) We need Y; to be pairwise independent and satisfy E[Y;Y;] =0
and E[Y?] =1
® (*) Solution: Y; = 1 with probability % and Y; = —1 with
probability %

AMS F2 Estimation Continued

® Creating O(n) random variables takes up too much space!

® Solution: O(1)-wise independent hash family of functions
[n] — {—1,1} can be stored in O(polylog(n)) space

= 2$c V\((\
W we sep €€ Ca)
2 %= \I\Ke\

AMS F2 Estimation Continued

® Creating O(n) random variables takes up too much space!

® Solution: O(1)-wise independent hash family of functions
[n] = {—1,1} can be stored in O(polylog(n)) space

® (*) Replace each Y; with hA(7), and the analysis is the exact same

AMS F2 Estimation Continued

® Creating O(n) random variables takes up too much space!

® Solution: O(1)-wise independent hash family of functions
[n] — {—1,1} can be stored in O(polylog(n)) space

® (*) Replace each Y; with hA(7), and the analysis is the exact same

® (*) Similar analysis shows E[Z%] < 2||f(0)]|[3, so we can apply
average and median idea from before

AMS F2 Estimation Continued

def

Creating O(n) random variables takes up too much space!
Solution: O(1)-wise independent hash family of functions

[n] — {—1,1} can be stored in O(polylog(n)) space

(*) Replace each Y; with h(%), and the analysis is the exact same

(*) Similar analysis shows E[Z?4] < 2||f(0)||3, so we can apply
average and median idea from before

ams_£2:

let h be a hash function from hash family H

let z = 0

while 1 is an item from stream (ﬁzfi/£f115\>
z =z + h(i) d 22

output z

2

Extending F2 Estimation

® Note that we never used the fact that f; was positive or integral

® Richer model: receive a stream of updates of the form (7, A;)
representing a change to the ¢th coordinate of our vector

Extending F2 Estimation

® Note that we never used the fact that f; was positive or integral

® Richer model: receive a stream of updates of the form (7, A;)
representing a change to the ¢th coordinate of our vector

def 12_estimate:
let h be a hash function from hash family H
let z =0
while (i,d) is an item from stream
z =z + h(i)d
output ##*

Ny & o fme C e g and <, bhe fw@qu
Lot = (@)« ()

4 (1 ¢
o) e) o
' . o ==

L ‘i\”&\\ I V\& -

Section 3

From Stream to Matrix

Linear Sketching

® What we just created is a linear sketch: call our algorithm C'. We

can show that C'(o1 + 02) = C(01) + C(02), since each iteration we
add to Z

® (*) Geometric interpretation: our algorithm is an log(1/€52) logn w n
matrix M of {—1,1} values, each row is a parallel copy of the
streaming algorithm

Linear Sketching

® What we just created is a linear sketch: call our algorithm C'. We
can show that C'(o1 + 02) = C(01) + C(02), since each iteration we
add to Z

® (*) Geometric interpretation: our algorithm is an log(1/€52) logn w n
matrix M of {—1,1} values, each row is a parallel copy of the
streaming algorithm

® (*) Now we have Mz = y where y is a vector whose length is
similar to that of 2 but is in lower dimension

Linear Sketching

® What we just created is a linear sketch: call our algorithm C'. We
can show that C'(o1 + 02) = C(01) + C(02), since each iteration we

add to Z
® (*) Geometric interpretation: our algorithm is an 10g(1/€52) logn o

matrix M of {—1,1} values, each row is a parallel copy of the
streaming algorithm

® (*) Now we have Mz = y where y is a vector whose length is
similar to that of 2 but is in lower dimension

® (*) Next goal: generalize this idea so that we can reduce the
dimension of a set of vectors while preserving pairwise distances

Linear Sketching

® What we just created is a linear sketch: call our algorithm C'. We
can show that C'(o1 + 02) = C(01) + C(02), since each iteration we
add to Z

® (*) Geometric interpretation: our algorithm is an 10g(1/€52) logn w n
matrix M of {—1,1} values, each row is a parallel copy of the
streaming algorithm

® (*) Now we have Mz = y where y is a vector whose length is
similar to that of 2 but is in lower dimension

® (*) Next goal: generalize this idea so that we can reduce the
dimension of a set of vectors while preserving pairwise distances

® (*) Useful in real-world applications such as nearest neighbors, ML,
etc

The JL Lemma
e(y]=0 [Ex):

® Let M be an k£ X n matrix where each entry is chosen independently
from N(0,1)
e Claim: for £k = Q (b%#), we have that with probability 1 — 0,

||\/_M:13||2 (1 £ ¢€)||z||2 for fixed x € R”

[0S W a b of ~ Jeckovs,
mofvix
1C o< /\l\lﬂ Q’L" will presecve paivwisc c)iéjraweg

2

The JL. Lemma

® Let M be an k£ X n matrix where each entry is chosen independently

from N(0,1)
e Claim: for £k = Q (b%#), we have that with probability 1 — 0,
||\/—Mx||2 (1 £ €)||x||2 for fixed z € R™

®* Immediate corollary: Let S be a set of k£ vectors in R", we can
preserve pairwise distances with high probability by picking

a()

The JL. Lemma

® Let M be an k£ X n matrix where each entry is chosen independently

from N(0,1)
e Claim: for £k = Q (b%#), we have that with probability 1 — 0,
||\/—Mx||2 (1 £ €)||x||2 for fixed z € R™

®* Immediate corollary: Let S be a set of k£ vectors in R", we can
preserve pairwise distances with high probability by picking

a()

JL Lemma: Idea of Proof

® Fix some vector x (wlog, let ||z|| = 1) and use 2-stability of Normal
distribution

JL Lemma: Idea of Proof

® Fix some vector x (wlog, let ||z|| = 1) and use 2-stability of Normal
distribution

® (*) Let y = M=z, so then y; = 2521 M;jx;

JL Lemma: Idea of Proof

® Fix some vector x (wlog, let ||z|| = 1) and use 2-stability of Normal
distribution

® (*) Let y = M=z, so then y; = 2;21 M;jx;

® (*) y is a Normal vector in R¥, and each 7; is N(0,1) (variance
because Y x% = 1)

JL Lemma: Idea of Proof

® Fix some vector x (wlog, let ||z|| = 1) and use 2-stability of Normal
distribution

® (*) Let y = M=z, so then y; = Z?Il M;;x;

® (*) y is a Normal vector in R*, and each y; is A(0,1) (variance
because Y x% = 1)

o (*) Let a =Y y?, so then a ~ x*(k)

JL Lemma: Idea of Proof

® Fix some vector x (wlog, let ||z|| = 1) and use 2-stability of Normal
distribution

® (*) Let y = M=z, so then y; = Z?ﬂ M;;x;

® (*) y is a Normal vector in R*, and each y; is A(0,1) (variance
because Y x% = 1)

o (*) Let a =Y y?, so then a ~ x*(k)

o (*) Thus P((1 — €)%k < oo < (1 + €)2k) > 1 — 20k

JL Lemma: Idea of Proof

® Fix some vector x (wlog, let ||x|| = 1) and use 2-stability of Normal
distribution

® (*) Let y = M=z, so then y; = 2?21 M;;x;

® (*) y is a Normal vector in R*, and each y; is A(0,1) (variance
because Y x% = 1)

o (*) Let a =Y y?, so then a ~ x*(k)

o (*) Thus P((1 — €)%k < oo < (1 + €)2k) > 1 — 20k

(*) Picking k = Q (M) gets us the probability we want

€

2

Section 4

Conclusion

JL Lemma: Intuition and Application

® Why does projecting to a random subspace work? A large enough
random subspace means errors induced by “bad vectors" (i.e. those
orthogonal to many rows in the matrix) have extremely low
probability of ocurring

JL Lemma: Intuition and Application

® Why does projecting to a random subspace work? A large enough
random subspace means errors induced by “bad vectors" (i.e. those
orthogonal to many rows in the matrix) have extremely low
probability of ocurring

o Useful for tasks such as clustering/ML: things closer together /more
similar in low dimension will be close in high dimension, so can
reduce dimension and speed up clustering

JL Lemma: Intuition and Application

® Why does projecting to a random subspace work? A large enough
random subspace means errors induced by “bad vectors" (i.e. those
orthogonal to many rows in the matrix) have extremely low
probability of ocurring

o Useful for tasks such as clustering/ML: things closer together /more
similar in low dimension will be close in high dimension, so can
reduce dimension and speed up clustering

® (Coreset generation: Many hard geometric problems have fast
approximate solutions via coreset technique, which generates a set
S’ from input S so that running an exact algorithm on S’ generates
a high accuracy approximation for that algorithm on S. JL
technique can be used in generating coresets

JL Lemma: Intuition and Application

® Why does projecting to a random subspace work? A large enough
random subspace means errors induced by “bad vectors" (i.e. those
orthogonal to many rows in the matrix) have extremely low
probability of ocurring

o Useful for tasks such as clustering/ML: things closer together /more
similar in low dimension will be close in high dimension, so can
reduce dimension and speed up clustering

® (Coreset generation: Many hard geometric problems have fast
approximate solutions via coreset technique, which generates a set
S’ from input S so that running an exact algorithm on S’ generates
a high accuracy approximation for that algorithm on S. JL
technique can be used in generating coresets

* Key advantage of JL is that it is oblivious to data

'
(Y

One more thing. ..

®* JL Lemma extends to preserving vector distances in entire
subspaces of R"!

One more thing. ..

®* JL Lemma extends to preserving vector distances in entire
subspaces of R"!

® Let E be a linear subspace of dimension d

One more thing. ..

®* JL Lemma extends to preserving vector distances in entire
subspaces of R"!

® Let E be a linear subspace of dimension d

dlog(1 /5))
62

® (Can preserve distances between vectors in £ with k£ =) (

One more thing. ..

®* JL Lemma extends to preserving vector distances in entire
subspaces of R"!

® Let E be a linear subspace of dimension d

dlog(1 /5))
62

® (Can preserve distances between vectors in £ with k£ =) (

®* Works for all vectors in E, even though there are infinitely many!

One more thing. ..

®* JL Lemma extends to preserving vector distances in entire
subspaces of R"!

® Let E be a linear subspace of dimension d

dlog(1 /5))
62

® (Can preserve distances between vectors in £ with k£ =) (

®* Works for all vectors in E, even though there are infinitely many!

® Poof: consider partitioning the d dimensional unit ball into small
hypercubes with small side length. Show that preserving lengths of
vectors to these hypercubes is sufficient to preserve lengths of all

Sa(r) I
: Qnddop) Z

vectors.

O<te =

