
Week 11
Streaming Algorithms and the JL Lemma

Ryan Ziegler

 



Outline

Background
Probability
Streaming and Sketching Algorithms

Streaming `2 Estimation

From Stream to Matrix

Conclusion



Section 1

Background



Subsection 1

Probability



A Probability Refresher

• (Discrete) probability distribution: given a set S assign some
probability pi to each element, so that

P
pi = 1

• A random variable X from a distribution D is a variable whose
value is randomly chosen according to some probability distribution
D. Often denoted X ⇠ D.

• Expected value: suppose S ✓ R, then E[X] =
P

piSi. Intuitively, if
we picked a bunch of X following D, this is the average value we’d
see.

• Expectation is a linear operator: E[X + Y ] = E[X] + E[Y ]
• Variance: Var(X) = E[X2]� E[X]2, a low variance indicates that

most of the time, when we pick X it will be close to E[X]
I Note that for c 2 R, Var(cX) = c

2Var(X)



A Probability Refresher

• (Discrete) probability distribution: given a set S assign some
probability pi to each element, so that

P
pi = 1

• A random variable X from a distribution D is a variable whose
value is randomly chosen according to some probability distribution
D. Often denoted X ⇠ D.

• Expected value: suppose S ✓ R, then E[X] =
P

piSi. Intuitively, if
we picked a bunch of X following D, this is the average value we’d
see.

• Expectation is a linear operator: E[X + Y ] = E[X] + E[Y ]
• Variance: Var(X) = E[X2]� E[X]2, a low variance indicates that

most of the time, when we pick X it will be close to E[X]
I Note that for c 2 R, Var(cX) = c

2Var(X)



A Probability Refresher

• (Discrete) probability distribution: given a set S assign some
probability pi to each element, so that

P
pi = 1

• A random variable X from a distribution D is a variable whose
value is randomly chosen according to some probability distribution
D. Often denoted X ⇠ D.

• Expected value: suppose S ✓ R, then E[X] =
P

piSi. Intuitively, if
we picked a bunch of X following D, this is the average value we’d
see.

• Expectation is a linear operator: E[X + Y ] = E[X] + E[Y ]
• Variance: Var(X) = E[X2]� E[X]2, a low variance indicates that

most of the time, when we pick X it will be close to E[X]
I Note that for c 2 R, Var(cX) = c

2Var(X)



A Probability Refresher

• (Discrete) probability distribution: given a set S assign some
probability pi to each element, so that

P
pi = 1

• A random variable X from a distribution D is a variable whose
value is randomly chosen according to some probability distribution
D. Often denoted X ⇠ D.

• Expected value: suppose S ✓ R, then E[X] =
P

piSi. Intuitively, if
we picked a bunch of X following D, this is the average value we’d
see.

• Expectation is a linear operator: E[X + Y ] = E[X] + E[Y ]

• Variance: Var(X) = E[X2]� E[X]2, a low variance indicates that
most of the time, when we pick X it will be close to E[X]
I Note that for c 2 R, Var(cX) = c

2Var(X)



A Probability Refresher

• (Discrete) probability distribution: given a set S assign some
probability pi to each element, so that

P
pi = 1

• A random variable X from a distribution D is a variable whose
value is randomly chosen according to some probability distribution
D. Often denoted X ⇠ D.

• Expected value: suppose S ✓ R, then E[X] =
P

piSi. Intuitively, if
we picked a bunch of X following D, this is the average value we’d
see.

• Expectation is a linear operator: E[X + Y ] = E[X] + E[Y ]
• Variance: Var(X) = E[X2]� E[X]2, a low variance indicates that

most of the time, when we pick X it will be close to E[X]

I Note that for c 2 R, Var(cX) = c
2Var(X)



A Probability Refresher

• (Discrete) probability distribution: given a set S assign some
probability pi to each element, so that

P
pi = 1

• A random variable X from a distribution D is a variable whose
value is randomly chosen according to some probability distribution
D. Often denoted X ⇠ D.

• Expected value: suppose S ✓ R, then E[X] =
P

piSi. Intuitively, if
we picked a bunch of X following D, this is the average value we’d
see.

• Expectation is a linear operator: E[X + Y ] = E[X] + E[Y ]
• Variance: Var(X) = E[X2]� E[X]2, a low variance indicates that

most of the time, when we pick X it will be close to E[X]
I Note that for c 2 R, Var(cX) = c

2Var(X)



Even More Probability

• Normal distribution: N (µ,�2) = 1
�
p
2⇡

exp
⇣
�1

2

�
x�µ

�

�2⌘

• Normal distribution is 2-stable: for X ⇠ N (µ1,�
2
1) and

Y ⇠ N (µ2,�
2
2), X + Y ⇠ N (µ1 + µ2,�

2
1 + �

2
2)

• �
2(k) distribution: Sum of k N (0, 1) random variables, has

expected value k

• Bernoulli distribution: If X ⇠ Bernoulli(p), X is 1 with probability
p and 0 with probability (1� p)



Even More Probability

• Normal distribution: N (µ,�2) = 1
�
p
2⇡

exp
⇣
�1

2

�
x�µ

�

�2⌘

• Normal distribution is 2-stable: for X ⇠ N (µ1,�
2
1) and

Y ⇠ N (µ2,�
2
2), X + Y ⇠ N (µ1 + µ2,�

2
1 + �

2
2)

• �
2(k) distribution: Sum of k N (0, 1) random variables, has

expected value k

• Bernoulli distribution: If X ⇠ Bernoulli(p), X is 1 with probability
p and 0 with probability (1� p)



Even More Probability

• Normal distribution: N (µ,�2) = 1
�
p
2⇡

exp
⇣
�1

2

�
x�µ

�

�2⌘

• Normal distribution is 2-stable: for X ⇠ N (µ1,�
2
1) and

Y ⇠ N (µ2,�
2
2), X + Y ⇠ N (µ1 + µ2,�

2
1 + �

2
2)

• �
2(k) distribution: Sum of k N (0, 1) random variables, has

expected value k

• Bernoulli distribution: If X ⇠ Bernoulli(p), X is 1 with probability
p and 0 with probability (1� p)



Even More Probability

• Normal distribution: N (µ,�2) = 1
�
p
2⇡

exp
⇣
�1

2

�
x�µ

�

�2⌘

• Normal distribution is 2-stable: for X ⇠ N (µ1,�
2
1) and

Y ⇠ N (µ2,�
2
2), X + Y ⇠ N (µ1 + µ2,�

2
1 + �

2
2)

• �
2(k) distribution: Sum of k N (0, 1) random variables, has

expected value k

• Bernoulli distribution: If X ⇠ Bernoulli(p), X is 1 with probability
p and 0 with probability (1� p)



Independence and Inequalities

• A set of random variables is k-wise independent iff for any k

variables in the set, f(x1, . . . , xk) = f(x1) · · · f(xk)

• For k-wise independent random variables, E
hQ

k

i=1Xi

i
=

Q
k

i=1 E[xi]

I Important: k-wise independence implies (k � 1)-wise independence
• Chebyshev’s inequality: P(|X � E[X]| � k�)  1

k2

• Chernoff bound: Let X be sum of h fully independent Bernoulli
RVs, and � � 1. P(X > (1 + �)E[X])  e

��
2
µ/3



Independence and Inequalities

• A set of random variables is k-wise independent iff for any k

variables in the set, f(x1, . . . , xk) = f(x1) · · · f(xk)
• For k-wise independent random variables, E

hQ
k

i=1Xi

i
=

Q
k

i=1 E[xi]

I Important: k-wise independence implies (k � 1)-wise independence
• Chebyshev’s inequality: P(|X � E[X]| � k�)  1

k2

• Chernoff bound: Let X be sum of h fully independent Bernoulli
RVs, and � � 1. P(X > (1 + �)E[X])  e

��
2
µ/3



Independence and Inequalities

• A set of random variables is k-wise independent iff for any k

variables in the set, f(x1, . . . , xk) = f(x1) · · · f(xk)
• For k-wise independent random variables, E

hQ
k

i=1Xi

i
=

Q
k

i=1 E[xi]

I Important: k-wise independence implies (k � 1)-wise independence

• Chebyshev’s inequality: P(|X � E[X]| � k�)  1
k2

• Chernoff bound: Let X be sum of h fully independent Bernoulli
RVs, and � � 1. P(X > (1 + �)E[X])  e

��
2
µ/3



Independence and Inequalities

• A set of random variables is k-wise independent iff for any k

variables in the set, f(x1, . . . , xk) = f(x1) · · · f(xk)
• For k-wise independent random variables, E

hQ
k

i=1Xi

i
=

Q
k

i=1 E[xi]

I Important: k-wise independence implies (k � 1)-wise independence
• Chebyshev’s inequality: P(|X � E[X]| � k�)  1

k2

• Chernoff bound: Let X be sum of h fully independent Bernoulli
RVs, and � � 1. P(X > (1 + �)E[X])  e

��
2
µ/3



Independence and Inequalities

• A set of random variables is k-wise independent iff for any k

variables in the set, f(x1, . . . , xk) = f(x1) · · · f(xk)
• For k-wise independent random variables, E

hQ
k

i=1Xi

i
=

Q
k

i=1 E[xi]

I Important: k-wise independence implies (k � 1)-wise independence
• Chebyshev’s inequality: P(|X � E[X]| � k�)  1

k2

• Chernoff bound: Let X be sum of h fully independent Bernoulli
RVs, and � � 1. P(X > (1 + �)E[X])  e

��
2
µ/3



Subsection 2

Streaming and Sketching Algorithms



Intro to Streaming Algorithms

• Streaming model: your algorithm receives inputs one-by-one, and
you don’t know how many inputs you’ll receive. Too many inputs
to store them all and compute later

• (*) Example: suppose you want to calculate the k most watched
YouTube videos today. It takes too much space to store all the
YouTube videos and associated view counters, so you want an
algorithm that does the following: upon recieving a YouTube video
ID, update some data structure and continue without storing
anything on disk. At the end of the day, this data structure should
tell you the k most viewed videos.

• (*) The above is possible to do exactly with only O(k) space, but
this is rare. Most streaming algorithms will only output
approximates that are good with some probability



Intro to Streaming Algorithms

• Streaming model: your algorithm receives inputs one-by-one, and
you don’t know how many inputs you’ll receive. Too many inputs
to store them all and compute later

• (*) Example: suppose you want to calculate the k most watched
YouTube videos today. It takes too much space to store all the
YouTube videos and associated view counters, so you want an
algorithm that does the following: upon recieving a YouTube video
ID, update some data structure and continue without storing
anything on disk. At the end of the day, this data structure should
tell you the k most viewed videos.

• (*) The above is possible to do exactly with only O(k) space, but
this is rare. Most streaming algorithms will only output
approximates that are good with some probability



Intro to Streaming Algorithms

• Streaming model: your algorithm receives inputs one-by-one, and
you don’t know how many inputs you’ll receive. Too many inputs
to store them all and compute later

• (*) Example: suppose you want to calculate the k most watched
YouTube videos today. It takes too much space to store all the
YouTube videos and associated view counters, so you want an
algorithm that does the following: upon recieving a YouTube video
ID, update some data structure and continue without storing
anything on disk. At the end of the day, this data structure should
tell you the k most viewed videos.

• (*) The above is possible to do exactly with only O(k) space, but
this is rare. Most streaming algorithms will only output
approximates that are good with some probability





A Template for Sketching Algorithms

• First, output a random variable Z such that E[Z] = g(�) where
g(�) is the function we’re estimating for the stream �

• Usually Z will have high variance, typically Var(Z)  g(�)

• How to reduce variance? Run the streaming algorithm h times in
parallel, and let Z

⇤ = 1
h

P
Zi

Var(Z⇤) =
1

h
Var(Z1) and E[Z⇤] = E[Z1]

• (*) By Chebyshev’s inequality,

P (|Z⇤ � g(�)| > ✏g(�))  ✏
2

h

• (*) So, pick h = 4
✏2

for constant failure probability of 1
4



The Median Trick

• Next goal: |Z⇤ � g(�)| > ✏g(�) with some small probability �

• Naive approach: do Chebyshev’s again. Requires O
�

1
�✏2

�
parallel

copies. We want to do better
• Consider parallel copies Z

⇤
1 , . . . , Z

⇤
k

that each fail with probability
1/4

• Our intuition tells us the median of these estimators should be
“good" but how good?

• (*) Let Xi = 1 iff the ith parallel copy fails, so then
Xi ⇠ Bernoulli(1/4)

• (*) Define X =
P

Xi, so then E[X] = k

4
• (*) By Chernoff bound,

P
✓
X � (1 + 1)

k

4

◆
 e

�k/12

• (*) So, pick k = O(log(1/�)). Only running O

✓
log( 1

� )
✏2

◆

independent copies of our algorithm!



The Median Trick

• Next goal: |Z⇤ � g(�)| > ✏g(�) with some small probability �

• Naive approach: do Chebyshev’s again. Requires O
�

1
�✏2

�
parallel

copies. We want to do better

• Consider parallel copies Z
⇤
1 , . . . , Z

⇤
k

that each fail with probability
1/4

• Our intuition tells us the median of these estimators should be
“good" but how good?

• (*) Let Xi = 1 iff the ith parallel copy fails, so then
Xi ⇠ Bernoulli(1/4)

• (*) Define X =
P

Xi, so then E[X] = k

4
• (*) By Chernoff bound,

P
✓
X � (1 + 1)

k

4

◆
 e

�k/12

• (*) So, pick k = O(log(1/�)). Only running O

✓
log( 1

� )
✏2

◆

independent copies of our algorithm!



The Median Trick

• Next goal: |Z⇤ � g(�)| > ✏g(�) with some small probability �

• Naive approach: do Chebyshev’s again. Requires O
�

1
�✏2

�
parallel

copies. We want to do better
• Consider parallel copies Z

⇤
1 , . . . , Z

⇤
k

that each fail with probability
1/4

• Our intuition tells us the median of these estimators should be
“good" but how good?

• (*) Let Xi = 1 iff the ith parallel copy fails, so then
Xi ⇠ Bernoulli(1/4)

• (*) Define X =
P

Xi, so then E[X] = k

4
• (*) By Chernoff bound,

P
✓
X � (1 + 1)

k

4

◆
 e

�k/12

• (*) So, pick k = O(log(1/�)). Only running O

✓
log( 1

� )
✏2

◆

independent copies of our algorithm!



The Median Trick

• Next goal: |Z⇤ � g(�)| > ✏g(�) with some small probability �

• Naive approach: do Chebyshev’s again. Requires O
�

1
�✏2

�
parallel

copies. We want to do better
• Consider parallel copies Z

⇤
1 , . . . , Z

⇤
k

that each fail with probability
1/4

• Our intuition tells us the median of these estimators should be
“good" but how good?

• (*) Let Xi = 1 iff the ith parallel copy fails, so then
Xi ⇠ Bernoulli(1/4)

• (*) Define X =
P

Xi, so then E[X] = k

4
• (*) By Chernoff bound,

P
✓
X � (1 + 1)

k

4

◆
 e

�k/12

• (*) So, pick k = O(log(1/�)). Only running O

✓
log( 1

� )
✏2

◆

independent copies of our algorithm!



The Median Trick

• Next goal: |Z⇤ � g(�)| > ✏g(�) with some small probability �

• Naive approach: do Chebyshev’s again. Requires O
�

1
�✏2

�
parallel

copies. We want to do better
• Consider parallel copies Z

⇤
1 , . . . , Z

⇤
k

that each fail with probability
1/4

• Our intuition tells us the median of these estimators should be
“good" but how good?

• (*) Let Xi = 1 iff the ith parallel copy fails, so then
Xi ⇠ Bernoulli(1/4)

• (*) Define X =
P

Xi, so then E[X] = k

4
• (*) By Chernoff bound,

P
✓
X � (1 + 1)

k

4

◆
 e

�k/12

• (*) So, pick k = O(log(1/�)). Only running O

✓
log( 1

� )
✏2

◆

independent copies of our algorithm!



The Median Trick

• Next goal: |Z⇤ � g(�)| > ✏g(�) with some small probability �

• Naive approach: do Chebyshev’s again. Requires O
�

1
�✏2

�
parallel

copies. We want to do better
• Consider parallel copies Z

⇤
1 , . . . , Z

⇤
k

that each fail with probability
1/4

• Our intuition tells us the median of these estimators should be
“good" but how good?

• (*) Let Xi = 1 iff the ith parallel copy fails, so then
Xi ⇠ Bernoulli(1/4)

• (*) Define X =
P

Xi, so then E[X] = k

4

• (*) By Chernoff bound,

P
✓
X � (1 + 1)

k

4

◆
 e

�k/12

• (*) So, pick k = O(log(1/�)). Only running O

✓
log( 1

� )
✏2

◆

independent copies of our algorithm!



The Median Trick

• Next goal: |Z⇤ � g(�)| > ✏g(�) with some small probability �

• Naive approach: do Chebyshev’s again. Requires O
�

1
�✏2

�
parallel

copies. We want to do better
• Consider parallel copies Z

⇤
1 , . . . , Z

⇤
k

that each fail with probability
1/4

• Our intuition tells us the median of these estimators should be
“good" but how good?

• (*) Let Xi = 1 iff the ith parallel copy fails, so then
Xi ⇠ Bernoulli(1/4)

• (*) Define X =
P

Xi, so then E[X] = k

4
• (*) By Chernoff bound,

P
✓
X � (1 + 1)

k

4

◆
 e

�k/12

• (*) So, pick k = O(log(1/�)). Only running O

✓
log( 1

� )
✏2

◆

independent copies of our algorithm!



The Median Trick

• Next goal: |Z⇤ � g(�)| > ✏g(�) with some small probability �

• Naive approach: do Chebyshev’s again. Requires O
�

1
�✏2

�
parallel

copies. We want to do better
• Consider parallel copies Z

⇤
1 , . . . , Z

⇤
k

that each fail with probability
1/4

• Our intuition tells us the median of these estimators should be
“good" but how good?

• (*) Let Xi = 1 iff the ith parallel copy fails, so then
Xi ⇠ Bernoulli(1/4)

• (*) Define X =
P

Xi, so then E[X] = k

4
• (*) By Chernoff bound,

P
✓
X � (1 + 1)

k

4

◆
 e

�k/12

• (*) So, pick k = O(log(1/�)). Only running O

✓
log( 1

� )
✏2

◆

independent copies of our algorithm!



Section 2

Streaming `2 Estimation



Frequency Moment Estimation

• Problem: we receive a stream � of values e1, · · · 2 Z where
1  ei  n for some n we know apriori

• Define the frequency vector to be f(�) = (f1, . . . , fn) where fi is the
number of times we’ve seen i

• Goal: estimate ||f(�)||22 with only O(polylog(n)) space
• Recall the definition of L2 norm:

||f(�)||22 =
nX

i=1

f
2
i



Frequency Moment Estimation

• Problem: we receive a stream � of values e1, · · · 2 Z where
1  ei  n for some n we know apriori

• Define the frequency vector to be f(�) = (f1, . . . , fn) where fi is the
number of times we’ve seen i

• Goal: estimate ||f(�)||22 with only O(polylog(n)) space
• Recall the definition of L2 norm:

||f(�)||22 =
nX

i=1

f
2
i



Frequency Moment Estimation

• Problem: we receive a stream � of values e1, · · · 2 Z where
1  ei  n for some n we know apriori

• Define the frequency vector to be f(�) = (f1, . . . , fn) where fi is the
number of times we’ve seen i

• Goal: estimate ||f(�)||22 with only O(polylog(n)) space

• Recall the definition of L2 norm:

||f(�)||22 =
nX

i=1

f
2
i



Frequency Moment Estimation

• Problem: we receive a stream � of values e1, · · · 2 Z where
1  ei  n for some n we know apriori

• Define the frequency vector to be f(�) = (f1, . . . , fn) where fi is the
number of times we’ve seen i

• Goal: estimate ||f(�)||22 with only O(polylog(n)) space
• Recall the definition of L2 norm:

||f(�)||22 =
nX

i=1

f
2
i



AMS F2 Estimation

• Intuition: keep a single variable Z so that we can output Z
2 as our

estimate of ||f(�)||22

• (*) Idea: create some random variable Yi for each index so that
E[Z2] = ||f(�)||22. In particular, Z =

P
Yifi

E[Z2] =
X

f
2
i Y

2
i + 2

X

i 6=j

fifjYiYj

• (*) We need Yi to be pairwise independent and satisfy E[YiYj ] = 0
and E[Y 2

i
] = 1

• (*) Solution: Yi = 1 with probability 1
2 and Yi = �1 with

probability 1
2



AMS F2 Estimation

• Intuition: keep a single variable Z so that we can output Z
2 as our

estimate of ||f(�)||22
• (*) Idea: create some random variable Yi for each index so that
E[Z2] = ||f(�)||22. In particular, Z =

P
Yifi

E[Z2] =
X

f
2
i Y

2
i + 2

X

i 6=j

fifjYiYj

• (*) We need Yi to be pairwise independent and satisfy E[YiYj ] = 0
and E[Y 2

i
] = 1

• (*) Solution: Yi = 1 with probability 1
2 and Yi = �1 with

probability 1
2



AMS F2 Estimation

• Intuition: keep a single variable Z so that we can output Z
2 as our

estimate of ||f(�)||22
• (*) Idea: create some random variable Yi for each index so that
E[Z2] = ||f(�)||22. In particular, Z =

P
Yifi

E[Z2] =
X

f
2
i Y

2
i + 2

X

i 6=j

fifjYiYj

• (*) We need Yi to be pairwise independent and satisfy E[YiYj ] = 0
and E[Y 2

i
] = 1

• (*) Solution: Yi = 1 with probability 1
2 and Yi = �1 with

probability 1
2



AMS F2 Estimation Continued

• Creating O(n) random variables takes up too much space!
• Solution: O(1)-wise independent hash family of functions
[n] ! {�1, 1} can be stored in O(polylog(n)) space

• (*) Replace each Yi with h(i), and the analysis is the exact same
• (*) Similar analysis shows E[Z4]  2||f(�)||22, so we can apply

average and median idea from before

def ams_f2:

let h be a hash function from hash family H

let z = 0

while i is an item from stream

z = z + h(i)

output z



AMS F2 Estimation Continued

• Creating O(n) random variables takes up too much space!
• Solution: O(1)-wise independent hash family of functions
[n] ! {�1, 1} can be stored in O(polylog(n)) space

• (*) Replace each Yi with h(i), and the analysis is the exact same

• (*) Similar analysis shows E[Z4]  2||f(�)||22, so we can apply
average and median idea from before

def ams_f2:

let h be a hash function from hash family H

let z = 0

while i is an item from stream

z = z + h(i)

output z



AMS F2 Estimation Continued

• Creating O(n) random variables takes up too much space!
• Solution: O(1)-wise independent hash family of functions
[n] ! {�1, 1} can be stored in O(polylog(n)) space

• (*) Replace each Yi with h(i), and the analysis is the exact same
• (*) Similar analysis shows E[Z4]  2||f(�)||22, so we can apply

average and median idea from before

def ams_f2:

let h be a hash function from hash family H

let z = 0

while i is an item from stream

z = z + h(i)

output z



AMS F2 Estimation Continued

• Creating O(n) random variables takes up too much space!
• Solution: O(1)-wise independent hash family of functions
[n] ! {�1, 1} can be stored in O(polylog(n)) space

• (*) Replace each Yi with h(i), and the analysis is the exact same
• (*) Similar analysis shows E[Z4]  2||f(�)||22, so we can apply

average and median idea from before

def ams_f2:

let h be a hash function from hash family H

let z = 0

while i is an item from stream

z = z + h(i)

output z



Extending F2 Estimation

• Note that we never used the fact that fi was positive or integral
• Richer model: receive a stream of updates of the form (i,�i)

representing a change to the ith coordinate of our vector

def l2_estimate:

let h be a hash function from hash family H

let z = 0

while (i,d) is an item from stream

z = z + h(i)d

output z



Extending F2 Estimation

• Note that we never used the fact that fi was positive or integral
• Richer model: receive a stream of updates of the form (i,�i)

representing a change to the ith coordinate of our vector

def l2_estimate:

let h be a hash function from hash family H

let z = 0

while (i,d) is an item from stream

z = z + h(i)d

output z





Section 3

From Stream to Matrix



Linear Sketching

• What we just created is a linear sketch: call our algorithm C. We
can show that C(�1 + �2) = C(�1) + C(�2), since each iteration we
add to Z

• (*) Geometric interpretation: our algorithm is an log(1/�) logn
✏2

⇥ n

matrix M of {�1, 1} values, each row is a parallel copy of the
streaming algorithm

• (*) Now we have Mx = y where y is a vector whose length is
similar to that of x but is in lower dimension

• (*) Next goal: generalize this idea so that we can reduce the
dimension of a set of vectors while preserving pairwise distances

• (*) Useful in real-world applications such as nearest neighbors, ML,
etc



Linear Sketching

• What we just created is a linear sketch: call our algorithm C. We
can show that C(�1 + �2) = C(�1) + C(�2), since each iteration we
add to Z

• (*) Geometric interpretation: our algorithm is an log(1/�) logn
✏2

⇥ n

matrix M of {�1, 1} values, each row is a parallel copy of the
streaming algorithm

• (*) Now we have Mx = y where y is a vector whose length is
similar to that of x but is in lower dimension

• (*) Next goal: generalize this idea so that we can reduce the
dimension of a set of vectors while preserving pairwise distances

• (*) Useful in real-world applications such as nearest neighbors, ML,
etc



Linear Sketching

• What we just created is a linear sketch: call our algorithm C. We
can show that C(�1 + �2) = C(�1) + C(�2), since each iteration we
add to Z

• (*) Geometric interpretation: our algorithm is an log(1/�) logn
✏2

⇥ n

matrix M of {�1, 1} values, each row is a parallel copy of the
streaming algorithm

• (*) Now we have Mx = y where y is a vector whose length is
similar to that of x but is in lower dimension

• (*) Next goal: generalize this idea so that we can reduce the
dimension of a set of vectors while preserving pairwise distances

• (*) Useful in real-world applications such as nearest neighbors, ML,
etc



Linear Sketching

• What we just created is a linear sketch: call our algorithm C. We
can show that C(�1 + �2) = C(�1) + C(�2), since each iteration we
add to Z

• (*) Geometric interpretation: our algorithm is an log(1/�) logn
✏2

⇥ n

matrix M of {�1, 1} values, each row is a parallel copy of the
streaming algorithm

• (*) Now we have Mx = y where y is a vector whose length is
similar to that of x but is in lower dimension

• (*) Next goal: generalize this idea so that we can reduce the
dimension of a set of vectors while preserving pairwise distances

• (*) Useful in real-world applications such as nearest neighbors, ML,
etc



The JL Lemma

• Let M be an k⇥ n matrix where each entry is chosen independently
from N (0, 1)

• Claim: for k = ⌦
⇣
log(1/�)

✏2

⌘
, we have that with probability 1� �,

|| 1p
k
Mx||2 = (1± ✏)||x||2 for fixed x 2 Rn

• Immediate corollary: Let S be a set of k vectors in Rn, we can
preserve pairwise distances with high probability by picking
k = ⌦

⇣
logn
✏2

⌘



The JL Lemma

• Let M be an k⇥ n matrix where each entry is chosen independently
from N (0, 1)

• Claim: for k = ⌦
⇣
log(1/�)

✏2

⌘
, we have that with probability 1� �,

|| 1p
k
Mx||2 = (1± ✏)||x||2 for fixed x 2 Rn

• Immediate corollary: Let S be a set of k vectors in Rn, we can
preserve pairwise distances with high probability by picking
k = ⌦

⇣
logn
✏2

⌘



The JL Lemma

• Let M be an k⇥ n matrix where each entry is chosen independently
from N (0, 1)

• Claim: for k = ⌦
⇣
log(1/�)

✏2

⌘
, we have that with probability 1� �,

|| 1p
k
Mx||2 = (1± ✏)||x||2 for fixed x 2 Rn

• Immediate corollary: Let S be a set of k vectors in Rn, we can
preserve pairwise distances with high probability by picking
k = ⌦

⇣
logn
✏2

⌘



JL Lemma: Idea of Proof

• Fix some vector x (wlog, let ||x|| = 1) and use 2-stability of Normal
distribution

• (*) Let y = Mx, so then yi =
P

k

j=1Mijxi

• (*) y is a Normal vector in Rk, and each yi is N (0, 1) (variance
because

P
x
2
i
= 1)

• (*) Let ↵ =
P

y
2
i
, so then ↵ ⇠ �

2(k)

• (*) Thus P((1� ✏)2k  ↵  (1 + ✏)2k) � 1� 2eO(1)✏2k

• (*) Picking k = ⌦
⇣
log(1/�)

✏2

⌘
gets us the probability we want



JL Lemma: Idea of Proof

• Fix some vector x (wlog, let ||x|| = 1) and use 2-stability of Normal
distribution

• (*) Let y = Mx, so then yi =
P

k

j=1Mijxi

• (*) y is a Normal vector in Rk, and each yi is N (0, 1) (variance
because

P
x
2
i
= 1)

• (*) Let ↵ =
P

y
2
i
, so then ↵ ⇠ �

2(k)

• (*) Thus P((1� ✏)2k  ↵  (1 + ✏)2k) � 1� 2eO(1)✏2k

• (*) Picking k = ⌦
⇣
log(1/�)

✏2

⌘
gets us the probability we want



JL Lemma: Idea of Proof

• Fix some vector x (wlog, let ||x|| = 1) and use 2-stability of Normal
distribution

• (*) Let y = Mx, so then yi =
P

k

j=1Mijxi

• (*) y is a Normal vector in Rk, and each yi is N (0, 1) (variance
because

P
x
2
i
= 1)

• (*) Let ↵ =
P

y
2
i
, so then ↵ ⇠ �

2(k)

• (*) Thus P((1� ✏)2k  ↵  (1 + ✏)2k) � 1� 2eO(1)✏2k

• (*) Picking k = ⌦
⇣
log(1/�)

✏2

⌘
gets us the probability we want



JL Lemma: Idea of Proof

• Fix some vector x (wlog, let ||x|| = 1) and use 2-stability of Normal
distribution

• (*) Let y = Mx, so then yi =
P

k

j=1Mijxi

• (*) y is a Normal vector in Rk, and each yi is N (0, 1) (variance
because

P
x
2
i
= 1)

• (*) Let ↵ =
P

y
2
i
, so then ↵ ⇠ �

2(k)

• (*) Thus P((1� ✏)2k  ↵  (1 + ✏)2k) � 1� 2eO(1)✏2k

• (*) Picking k = ⌦
⇣
log(1/�)

✏2

⌘
gets us the probability we want



JL Lemma: Idea of Proof

• Fix some vector x (wlog, let ||x|| = 1) and use 2-stability of Normal
distribution

• (*) Let y = Mx, so then yi =
P

k

j=1Mijxi

• (*) y is a Normal vector in Rk, and each yi is N (0, 1) (variance
because

P
x
2
i
= 1)

• (*) Let ↵ =
P

y
2
i
, so then ↵ ⇠ �

2(k)

• (*) Thus P((1� ✏)2k  ↵  (1 + ✏)2k) � 1� 2eO(1)✏2k

• (*) Picking k = ⌦
⇣
log(1/�)

✏2

⌘
gets us the probability we want



JL Lemma: Idea of Proof

• Fix some vector x (wlog, let ||x|| = 1) and use 2-stability of Normal
distribution

• (*) Let y = Mx, so then yi =
P

k

j=1Mijxi

• (*) y is a Normal vector in Rk, and each yi is N (0, 1) (variance
because

P
x
2
i
= 1)

• (*) Let ↵ =
P

y
2
i
, so then ↵ ⇠ �

2(k)

• (*) Thus P((1� ✏)2k  ↵  (1 + ✏)2k) � 1� 2eO(1)✏2k

• (*) Picking k = ⌦
⇣
log(1/�)

✏2

⌘
gets us the probability we want



Section 4

Conclusion



JL Lemma: Intuition and Application

• Why does projecting to a random subspace work? A large enough
random subspace means errors induced by “bad vectors" (i.e. those
orthogonal to many rows in the matrix) have extremely low
probability of ocurring

• Useful for tasks such as clustering/ML: things closer together/more
similar in low dimension will be close in high dimension, so can
reduce dimension and speed up clustering

• Coreset generation: Many hard geometric problems have fast
approximate solutions via coreset technique, which generates a set
S
0 from input S so that running an exact algorithm on S

0 generates
a high accuracy approximation for that algorithm on S. JL
technique can be used in generating coresets

• Key advantage of JL is that it is oblivious to data



JL Lemma: Intuition and Application

• Why does projecting to a random subspace work? A large enough
random subspace means errors induced by “bad vectors" (i.e. those
orthogonal to many rows in the matrix) have extremely low
probability of ocurring

• Useful for tasks such as clustering/ML: things closer together/more
similar in low dimension will be close in high dimension, so can
reduce dimension and speed up clustering

• Coreset generation: Many hard geometric problems have fast
approximate solutions via coreset technique, which generates a set
S
0 from input S so that running an exact algorithm on S

0 generates
a high accuracy approximation for that algorithm on S. JL
technique can be used in generating coresets

• Key advantage of JL is that it is oblivious to data



JL Lemma: Intuition and Application

• Why does projecting to a random subspace work? A large enough
random subspace means errors induced by “bad vectors" (i.e. those
orthogonal to many rows in the matrix) have extremely low
probability of ocurring

• Useful for tasks such as clustering/ML: things closer together/more
similar in low dimension will be close in high dimension, so can
reduce dimension and speed up clustering

• Coreset generation: Many hard geometric problems have fast
approximate solutions via coreset technique, which generates a set
S
0 from input S so that running an exact algorithm on S

0 generates
a high accuracy approximation for that algorithm on S. JL
technique can be used in generating coresets

• Key advantage of JL is that it is oblivious to data



JL Lemma: Intuition and Application

• Why does projecting to a random subspace work? A large enough
random subspace means errors induced by “bad vectors" (i.e. those
orthogonal to many rows in the matrix) have extremely low
probability of ocurring

• Useful for tasks such as clustering/ML: things closer together/more
similar in low dimension will be close in high dimension, so can
reduce dimension and speed up clustering

• Coreset generation: Many hard geometric problems have fast
approximate solutions via coreset technique, which generates a set
S
0 from input S so that running an exact algorithm on S

0 generates
a high accuracy approximation for that algorithm on S. JL
technique can be used in generating coresets

• Key advantage of JL is that it is oblivious to data



One more thing. . .

• JL Lemma extends to preserving vector distances in entire
subspaces of Rn!

• Let E be a linear subspace of dimension d

• Can preserve distances between vectors in E with k = ⌦
⇣
d log(1/�)

✏2

⌘

• Works for all vectors in E, even though there are infinitely many!
• Poof: consider partitioning the d dimensional unit ball into small

hypercubes with small side length. Show that preserving lengths of
vectors to these hypercubes is sufficient to preserve lengths of all
vectors.



One more thing. . .

• JL Lemma extends to preserving vector distances in entire
subspaces of Rn!

• Let E be a linear subspace of dimension d

• Can preserve distances between vectors in E with k = ⌦
⇣
d log(1/�)

✏2

⌘

• Works for all vectors in E, even though there are infinitely many!
• Poof: consider partitioning the d dimensional unit ball into small

hypercubes with small side length. Show that preserving lengths of
vectors to these hypercubes is sufficient to preserve lengths of all
vectors.



One more thing. . .

• JL Lemma extends to preserving vector distances in entire
subspaces of Rn!

• Let E be a linear subspace of dimension d

• Can preserve distances between vectors in E with k = ⌦
⇣
d log(1/�)

✏2

⌘

• Works for all vectors in E, even though there are infinitely many!
• Poof: consider partitioning the d dimensional unit ball into small

hypercubes with small side length. Show that preserving lengths of
vectors to these hypercubes is sufficient to preserve lengths of all
vectors.



One more thing. . .

• JL Lemma extends to preserving vector distances in entire
subspaces of Rn!

• Let E be a linear subspace of dimension d

• Can preserve distances between vectors in E with k = ⌦
⇣
d log(1/�)

✏2

⌘

• Works for all vectors in E, even though there are infinitely many!

• Poof: consider partitioning the d dimensional unit ball into small
hypercubes with small side length. Show that preserving lengths of
vectors to these hypercubes is sufficient to preserve lengths of all
vectors.



One more thing. . .

• JL Lemma extends to preserving vector distances in entire
subspaces of Rn!

• Let E be a linear subspace of dimension d

• Can preserve distances between vectors in E with k = ⌦
⇣
d log(1/�)

✏2

⌘

• Works for all vectors in E, even though there are infinitely many!
• Poof: consider partitioning the d dimensional unit ball into small

hypercubes with small side length. Show that preserving lengths of
vectors to these hypercubes is sufficient to preserve lengths of all
vectors.




