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Background



Subsection 1

Probability



A Probability Refresher

® (Discrete) probability distribution: given a set S assign some
probability p; to each element, so that ) p; =1
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A Probability Refresher

® (Discrete) probability distribution: given a set S assign some
probability p; to each element, so that ) p; =1

® A random wvariable X from a distribution D is a variable whose

value is randomly chosen according to some probability distribution
D. Often denoted X ~ D.
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A Probability Refresher

® (Discrete) probability distribution: given a set S assign some
probability p; to each element, so that ) p; =1

® A random wvariable X from a distribution D is a variable whose

value is randomly chosen according to some probability distribution
D. Often denoted X ~ D.

® Expected value: suppose S C R, then E[X| = > p;S;. Intuitively, if
we picked a bunch of X following D, this is the average value we’d
see.

® Expectation is a linear operator: E[X + Y] = E[X]| + E[Y]

® Variance: Var(X) = E[X?] — E[X]?, a low variance indicates that
most of the time, when we pick X it will be close to E[X]

» Note that for ¢ € R, Var(cX) = ¢*Var(X)



Even More Probability
/((0(\\ £ =0 Vor =1

* Normal distribution: N (i, 0?) = —— exp (_l (M)Q)
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Even More Probability

* Normal distribution: N(u,0?) = —— exp (_l (M)Q)
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Even More Probability

* Normal distribution: N (i, 0?) = —— exp (_l (M)Q)

oV2m 2 o
* Normal distribution is 2-stable: for X ~ A (u1,0%) and
Y ~ N(p2,03), X +Y ~ N(u1 + pa, 07 + 03)

* x2(k) distribution: Sum of £ A(0,1) random variables, has
expected value k

® Bernoulli distribution: If X ~ Bernoulli(p), X is 1 with probability
p and 0 with probability (1 — p)
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Independence and Inequalities
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® A set of random variables is k-wise independent iff for any k
variables in the set, f(x1,...,z;) = f(z1) - f(xk)
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Independence and Inequalities

® A set of random variables is k-wise independent iff for any k
variables in the set, f(x1,...,z;) = f(z1) - f(xk)

® For k-wise independent random variables, E {Hle XZ} = H,’le E|x;]
» Important: k-wise independence implies (k — 1)-wise independence

® Chebyshev’s inequality: P(|X — E[X]| > ko) < k:i?

® Chernoff bound: Let X be sum of A fully independent Bernoulli
RVs, and 6 > 1. P(X > (1+)E[X]) < =0 1/3
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Subsection 2

Streaming and Sketching Algorithms



Intro to Streaming Algorithms

® Streaming model: your algorithm receives inputs one-by-one, and
you don’t know how many inputs you’ll receive. Too many inputs
to store them all and compute later
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Intro to Streaming Algorithms

® Streaming model: your algorithm receives inputs one-by-one, and
you don’t know how many inputs you’ll receive. Too many inputs
to store them all and compute later

® (*) Example: suppose you want to calculate the k£ most watched
YouTube videos today. It takes too much space to store all the
YouTube videos and associated view counters, so you want an
algorithm that does the following: upon recieving a YouTube video
ID, update some data structure and continue without storing
anything on disk. At the end of the day, this data structure should
tell you the £ most viewed videos.



Intro to Streaming Algorithms

® Streaming model: your algorithm receives inputs one-by-one, and
you don’t know how many inputs you’ll receive. Too many inputs
to store them all and compute later

® (*) Example: suppose you want to calculate the k£ most watched
YouTube videos today. It takes too much space to store all the
YouTube videos and associated view counters, so you want an
algorithm that does the following: upon recieving a YouTube video
ID, update some data structure and continue without storing
anything on disk. At the end of the day, this data structure should
tell you the £ most viewed videos.

® (*) The above is possible to do ezactly with only O(k) space, but
this is rare. Most streaming algorithms will only output
approximates that are good with some probability
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A Template for Sketching Algorithms

® First, output a random variable Z such that E[Z] = g(o) where
g(o) is the function we’re estimating for the stream o

e Usually Z will have high variance, typically Var(Z) < g(o)

® How to reduce variance?” Run the streaming algorithm A times in
parallel, and let Z* = + >~ Z;

Var(2*) = %Var(Zl) and E[Z*] = E[Z4]

® (*) By Chebyshev’s inequality,

62
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® (*) So, pick h = ;iz for constant failure probability of



The Median Trick
® Next goal: |Z* — g(0)| > eg(o) with some small probability §



The Median Trick

® Next goal: |Z* — g(0)| > €g(o) with some small probability §
® Naive approach: do Chebyshev’s again. Requires O (%) parallel
copies. We want to do better



The Median Trick

® Next goal: |Z* — g(0)| > €g(o) with some small probability §

® Naive approach: do Chebyshev’s again. Requires O (%) parallel
copies. We want to do better

® Consider parallel copies Z7,..., Z; that each fail with probability
1/4



The Median Trick

® Next goal: |Z* — g(0)| > €g(o) with some small probability §

® Naive approach: do Chebyshev’s again. Requires O (%) parallel
copies. We want to do better

® Consider parallel copies Z7,..., Z; that each fail with probability
1/4

® Qur intuition tells us the median of these estimators should be
“ogood" but how good?



The Median Trick

® Next goal: |Z* — g(0)| > €g(o) with some small probability §

® Naive approach: do Chebyshev’s again. Requires O (%) parallel
copies. We want to do better

® Consider parallel copies Z7,..., Z; that each fail with probability
1/4

® Qur intuition tells us the median of these estimators should be
“ogood" but how good?

® (*) Let X; = 1 iff the ith parallel copy fails, so then
X; ~ Bernoulli(1/4)



The Median Trick

® Next goal: |Z* — g(0)| > €g(o) with some small probability §

® Naive approach: do Chebyshev’s again. Requires O (%) parallel
copies. We want to do better

® Consider parallel copies Z7,..., Z; that each fail with probability
1/4

® Qur intuition tells us the median of these estimators should be
“ogood" but how good?

® (*) Let X; = 1 iff the ith parallel copy fails, so then

X; ~ Bernoulli(1/4)

(*) Define X = 3" X, so then E[X] = &



The Median Trick

® Next goal: |Z* — g(0)| > €g(o) with some small probability §

® Naive approach: do Chebyshev’s again. Requires O (%) parallel
copies. We want to do better

® Consider parallel copies Z7,..., Z; that each fail with probability
1/4

® Qur intuition tells us the median of these estimators should be
“ogood" but how good?

® (*) Let X; = 1 iff the ith parallel copy fails, so then

X; ~ Bernoulli(1/4)

(*) Define X = 3" X, so then E[X] = &

(*) By Chernoft bound,

P (X > (14 1)%) < e k/12



The Median Trick

® Next goal: |Z* — g(0)| > €g(o) with some small probability §

® Naive approach: do Chebyshev’s again. Requires O (%) parallel
copies. We want to do better

® Consider parallel copies Z7,..., Z; that each fail with probability
1/4

® Qur intuition tells us the median of these estimators should be
“ogood" but how good?

® (*) Let X; = 1 iff the ith parallel copy fails, so then

X; ~ Bernoulli(1/4)

(*) Define X = 3" X, so then E[X] = &

(*) By Chernoft bound,

P (X > (1+ 1)%) < e k12

® (*) So, pick k = O(log(1/4)). Only running O (bi@) Z



Section 2

Streaming ¢ Estimation
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Frequency Moment Estimation

® Problem: we receive a stream o of values ey, -+ € Z where
1 <e; <n for some n we know apriori

® Define the frequency vector to be f(o) = (fi1,..., fn) where f; is the
number of times we’ve seen 17

® Goal: estimate ||f(o)||3 with only O(polylog(n)) space

® Recall the definition of Lo norm:

1f(o)ls =) f7
1=1



AMS F2 Estimation

 Intuition: keep a single variable Z so that we can output Z? as our
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AMS F2 Estimation

 Intuition: keep a single variable Z so that we can output Z? as our
estimate of || f(o)||3

® (*) Idea: create some random variable Y; for each index so that
E[Z?] = ||f(0)]|3. In particular, Z = >_Y; f;

E[Z%] =) [Y?P+2) fif;YiY;
i#]

® (*) We need Y; to be pairwise independent and satisfy E[Y;Y;] =0
and ]E[Y,LQ] —1
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AMS F2 Estimation

 Intuition: keep a single variable Z so that we can output Z? as our

estimate of || f(o)||3
® (*) Idea: create some random variable Y; for each index so that
E[Z?] = ||f(0)]|3. In particular, Z = >_Y; f;

ELZ%) = 3 FIVE 42D FifiYiY;
i#]
® (*) We need Y; to be pairwise independent and satisfy E[Y;Y;] =0
and E[Y?] =1
® (*) Solution: Y; = 1 with probability % and Y; = —1 with
probability %



AMS F2 Estimation Continued

® Creating O(n) random variables takes up too much space!

® Solution: O(1)-wise independent hash family of functions
[n] — {—1,1} can be stored in O(polylog(n)) space
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® (*) Replace each Y; with hA(7), and the analysis is the exact same
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AMS F2 Estimation Continued

def

Creating O(n) random variables takes up too much space!
Solution: O(1)-wise independent hash family of functions

[n] — {—1,1} can be stored in O(polylog(n)) space

(*) Replace each Y; with h(%), and the analysis is the exact same

(*) Similar analysis shows E[Z?4] < 2||f(0)||3, so we can apply
average and median idea from before

ams_£2:

let h be a hash function from hash family H

let z = 0

while 1 is an item from stream (ﬁzfi/£f115\>
z =z + h(i) d 22

output z

2



Extending F2 Estimation

® Note that we never used the fact that f; was positive or integral

® Richer model: receive a stream of updates of the form (7, A;)
representing a change to the ¢th coordinate of our vector



Extending F2 Estimation

® Note that we never used the fact that f; was positive or integral

® Richer model: receive a stream of updates of the form (7, A;)
representing a change to the ¢th coordinate of our vector

def 12_estimate:
let h be a hash function from hash family H
let z =0
while (i,d) is an item from stream
z =z + h(i)d
output ##*
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Section 3

From Stream to Matrix



Linear Sketching

® What we just created is a linear sketch: call our algorithm C'. We

can show that C'(o1 + 02) = C(01) + C(02), since each iteration we
add to Z

® (*) Geometric interpretation: our algorithm is an log(1/€52) logn w n
matrix M of {—1,1} values, each row is a parallel copy of the
streaming algorithm
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Linear Sketching

® What we just created is a linear sketch: call our algorithm C'. We
can show that C'(o1 + 02) = C(01) + C(02), since each iteration we
add to Z

® (*) Geometric interpretation: our algorithm is an 10g(1/€52) logn w n
matrix M of {—1,1} values, each row is a parallel copy of the
streaming algorithm

® (*) Now we have Mz = y where y is a vector whose length is
similar to that of 2 but is in lower dimension

® (*) Next goal: generalize this idea so that we can reduce the
dimension of a set of vectors while preserving pairwise distances

® (*) Useful in real-world applications such as nearest neighbors, ML,
etc



The JL Lemma
e(y]=0 [Ex):

® Let M be an k£ X n matrix where each entry is chosen independently
from N(0,1)
e Claim: for £k = Q (b%#), we have that with probability 1 — 0,

||\/_M:13||2 (1 £ ¢€)||z||2 for fixed x € R”
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The JL. Lemma

® Let M be an k£ X n matrix where each entry is chosen independently

from N(0,1)
e Claim: for £k = Q (b%#), we have that with probability 1 — 0,
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®* Immediate corollary: Let S be a set of k£ vectors in R", we can
preserve pairwise distances with high probability by picking
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JL Lemma: Idea of Proof

® Fix some vector x (wlog, let ||x|| = 1) and use 2-stability of Normal
distribution

® (*) Let y = M=z, so then y; = 2?21 M;;x;

® (*) y is a Normal vector in R*, and each y; is A(0,1) (variance
because Y x% = 1)

o (*) Let a =Y y?, so then a ~ x*(k)

o (*) Thus P((1 — €)%k < oo < (1 + €)2k) > 1 — 20k

(*) Picking k = Q (M) gets us the probability we want

€
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Section 4

Conclusion
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JL Lemma: Intuition and Application

® Why does projecting to a random subspace work? A large enough
random subspace means errors induced by “bad vectors" (i.e. those
orthogonal to many rows in the matrix) have extremely low
probability of ocurring

o Useful for tasks such as clustering/ML: things closer together /more
similar in low dimension will be close in high dimension, so can
reduce dimension and speed up clustering

® (Coreset generation: Many hard geometric problems have fast
approximate solutions via coreset technique, which generates a set
S’ from input S so that running an exact algorithm on S’ generates
a high accuracy approximation for that algorithm on S. JL
technique can be used in generating coresets

* Key advantage of JL is that it is oblivious to data

'
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One more thing. ..

®* JL Lemma extends to preserving vector distances in entire
subspaces of R"!

® Let E be a linear subspace of dimension d

dlog(1 /5))
62

® (Can preserve distances between vectors in £ with k£ = ) (

®* Works for all vectors in E, even though there are infinitely many!

® Poof: consider partitioning the d dimensional unit ball into small
hypercubes with small side length. Show that preserving lengths of
vectors to these hypercubes is sufficient to preserve lengths of all

Sa(r) I
: Qnddop) Z

vectors.
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